ترغب بنشر مسار تعليمي؟ اضغط هنا

The VISTA Deep Extragalactic Observations (VIDEO) Survey

97   0   0.0 ( 0 )
 نشر من قبل Matt Jarvis
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we describe the first data release of the the Visible and Infrared Survey Telescope for Astronomy (VISTA) Deep Extragalactic Observations (VIDEO) survey. VIDEO is a ~12degree^2 survey in the near-infrared Z,Y,J,H and K_s bands, specifically designed to enable the evolution of galaxies and large structures to be traced as a function of both epoch and environment from the present day out to z=4, and active galactic nuclei (AGN) and the most massive galaxies up to and into the epoch of reionization. With its depth and area, VIDEO will be able to fully explore the period in the Universe where AGN and starburst activity were at their peak and the first galaxy clusters were beginning to virialize. VIDEO therefore offers a unique data set with which to investigate the interplay between AGN, starbursts and environment, and the role of feedback at a time when it was potentially most crucial. We provide data over the VIDEO-XMM3 tile, which also covers the Canada-France-Hawaii-Telescope Legacy Survey Deep-1 field (CFHTLS-D1). The released VIDEO data reach a 5-sigma AB-magnitude depth of Z=25.7, Y=24.5, J=24.4, H=24.1 and K_s=23.8 in 2 arcsec diameter apertures (the full depth of Y=24.6 will be reached within the full integration time in future releases). The data are compared to previous surveys over this field and we find good astrometric agreement with the Two-Micron All Sky Survey, and source counts in agreement with the recently released UltraVISTA survey data. The addition of the VIDEO data to the CFHTLS-D1 optical data increases the accuracy of photometric redshifts and significantly reduces the fraction of catastrophic outliers over the redshift range 0<z<1 from 5.8 to 3.1 per cent in the absence of an i-band luminosity prior. (Truncated Abstract)



قيم البحث

اقرأ أيضاً

WAVES is designed to study the growth of structure, mass and energy on scales of ~1 kpc to ~10 Mpc over a 7 Gyr timeline. On the largest length scales (1-10 Mpc) WAVES will measure the structures defined by groups, filaments and voids, and their emer gence over recent times. Comparisons with bespoke numerical simulations will be used to confirm, refine or refute the Cold Dark Matter paradigm. At intermediate length scales (10 kpc-1 Mpc) WAVES will probe the size and mass distribution of galaxy groups, as well as the galaxy merger rates, in order to directly measure the assembly of dark matter halos and stellar mass. On the smallest length scales (1-10 kpc) WAVES will provide accurate distance and environmental measurements to complement high-resolution space-based imaging to study the mass and size evolution of galaxy bulges, discs and bars. In total, WAVES will provide a panchromatic legacy dataset of ~1.6 million galaxies, firmly linking the very low ($z < 0.1$) and intermediate ($z sim 0.8$) redshift Universe.
We search for extragalactic sources in the VISTA Variables in the Via Lactea survey that are hidden by the Galaxy. Herein, we describe our photometric procedure to find and characterize extragalactic objects using a combination of SExtractor and PSFE x. It was applied in two tiles of the survey: d010 and d115, without previous extragalactic IR detections, in order to obtain photometric parameters of the detected sources. The adopted criteria to define extragalactic candidates include CLASS_STAR < 0.3; 1.0 < R1/2 < 5.0 arcsec; 2.1 < C < 5; and Phi > 0.002 and the colors: 0.5 < (J - K_s) < 2.0 mag; 0.0 < (J - H) < 1.0 mag; 0.0 < (H - K_s) < 2.0 mag and (J - H) + 0.9 (H - K_s) > 0.44 mag. We detected 345 and 185 extragalactic candidates in the d010 and d115 tiles, respectively. All of them were visually inspected and confirmed to be galaxies. In general, they are small and more circular objects, due to the near-IR sensitivity to select more compact objects with higher surface brightness. The procedure will be used to identify extragalactic objects in other tiles of the VVV disk, which will allow us to study the distribution of galaxies and filaments hidden by the Milky Way.
The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8--1.5. It will image >250,000 distant galaxies using three separate c ameras on the Hubble Space Telescope, from the mid-ultraviolet to the near-infrared, and will find and measure Type Ia supernovae at z>1.5 to test their accuracy as standardizable candles for cosmology. Five premier multi-wavelength sky regions are selected, each with extensive ancillary data. The use of five widely separated fields mitigates cosmic variance and yields statistically robust and complete samples of galaxies down to a stellar mass of 10^9 M_odot to z approx 2, reaching the knee of the ultraviolet luminosity function (UVLF) of galaxies to z approx 8. The survey covers approximately 800 arcmin^2 and is divided into two parts. The CANDELS/Deep survey (5sigma point-source limit H=27.7 mag) covers sim 125 arcmin^2 within GOODS-N and GOODS-S. The CANDELS/Wide survey includes GOODS and three additional fields (EGS, COSMOS, and UDS) and covers the full area to a 5sigma point-source limit of H gtrsim 27.0 mag. Together with the Hubble Ultra Deep Fields, the strategy creates a three-tiered wedding cake approach that has proven efficient for extragalactic surveys. Data from the survey are nonproprietary and are useful for a wide variety of science investigations. In this paper, we describe the basic motivations for the survey, the CANDELS team science goals and the resulting observational requirements, the field selection and geometry, and the observing design. The Hubble data processing and products are described in a companion paper.
The Wide Area VISTA Extra-galactic Survey (WAVES) is a 4MOST Consortium Design Reference Survey which will use the VISTA/4MOST facility to spectroscopically survey ~2million galaxies to $r_{rm AB} < 22$ mag. WAVES consists of two interlocking galaxy surveys (WAVES-Deep and WAVES-Wide), providing the next two steps beyond the highly successful 1M galaxy Sloan Digital Sky Survey and the 250k Galaxy And Mass Assembly survey. WAVES will enable an unprecedented study of the distribution and evolution of mass, energy, and structures extending from 1-kpc dwarf galaxies in the local void to the morphologies of 200-Mpc filaments at $zsim1$. A key aim of both surveys will be to compare comprehensive empirical observations of the spatial properties of galaxies, groups, and filaments, against state-of-the-art numerical simulations to distinguish between various Dark Matter models.
This paper describes the Hubble Space Telescope imaging data products and data reduction procedures for the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey (CANDELS). This survey is designed to document the evolution of galaxies and black ho les at $zsim1.5-8$, and to study Type Ia SNe beyond $z>1.5$. Five premier multi-wavelength sky regions are selected, each with extensive multiwavelength observations. The primary CANDELS data consist of imaging obtained in the Wide Field Camera 3 / infrared channel (WFC3/IR) and UVIS channel, along with the Advanced Camera for Surveys (ACS). The CANDELS/Deep survey covers sim125 square arcminutes within GOODS-N and GOODS-S, while the remainder consists of the CANDELS/Wide survey, achieving a total of sim800 square arcminutes across GOODS and three additional fields (EGS, COSMOS, and UDS). We summarize the observational aspects of the survey as motivated by the scientific goals and present a detailed description of the data reduction procedures and products from the survey. Our data reduction methods utilize the most up to date calibration files and image combination procedures. We have paid special attention to correcting a range of instrumental effects, including CTE degradation for ACS, removal of electronic bias-striping present in ACS data after SM4, and persistence effects and other artifacts in WFC3/IR. For each field, we release mosaics for individual epochs and eventual mosaics containing data from all epochs combined, to facilitate photometric variability studies and the deepest possible photometry. A more detailed overview of the science goals and observational design of the survey are presented in a companion paper.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا