ﻻ يوجد ملخص باللغة العربية
We develop a numerical approach for quantifying entanglement in mixed quantum states by convex-roof entanglement measures, based on the optimal entanglement witness operator and the minimax optimization method. Our approach is applicable to general entanglement measures and states and is an efficient alternative to the conventional approach based on the optimal pure-state decomposition. Compared with the conventional one, it has two important merits: (i) that the global optimality of the solution is quantitatively verifiable, and (ii) that the optimization is considerably simplified by exploiting the common symmetry of the target state and measure. To demonstrate the merits, we quantify Greenberger-Horne-Zeilinger (GHZ) entanglement in a class of three-qubit full-rank mixed states composed of the GHZ state, the W state, and the white noise, the simplest mixtures of states with different genuine multipartite entanglement, which have not been quantified before this work. We discuss some general properties of the form of the optimal witness operator and of the convex structure of mixed states, which are related to the symmetry and the rank of states.
Geometric quantum mechanics aims to express the physical properties of quantum systems in terms of geometrical features preferentially selected in the space of pure states. Geometric characterisations are given here for systems of one, two, and three
We introduce a feasible method of constructing the entanglement witness that detects the genuine entanglement of a given pure multiqubit state. We illustrate our method in the scenario of constructing the witnesses for the multiqubit states that are
We study the degree to which quantum entanglement survives when a three-qubit entangled state is copied by using local and non-local processes, respectively, and investigate iterating quantum copying for the three-qubit system. There may exist inter-
An entanglement witness is an observable detecting entanglement for a subset of states. We present a framework that makes an entanglement witness twice as powerful due to the general existence of a second (lower) bound, in addition to the (upper) bou
Hybrid encoding of quantum information is a promising approach towards the realisation of optical quantum protocols. It combines advantages of continuous variables encoding, such as high efficiencies, with those of discrete variables, such as high fi