ﻻ يوجد ملخص باللغة العربية
We propose a method for calculating DIS jet production cross sections in QCD at NLO accuracy with consistent treatment of heavy quarks. The scheme relies on the dipole subtraction method for jets, which we extend to all possible initial state splittings with heavy partons, so that the Aivazis-Collins-Olness-Tung massive collinear factorization scheme (ACOT) can be applied. As a first check of the formalism we recover the ACOT result for the heavy quark structure function using a dedicated Monte Carlo program.
We present a consistent treatment of heavy quarks for jet production in DIS at NLO accuracy. The method is based on the ACOT massive factorization scheme and dipole subtraction method for jets. The last had to be however extended in order to take int
We present a computation for inclusive charged-current deeply-inelastic scattering at NNLO (N$^2$LO) in QCD. Mass-dependent quark contributions are consistently included across a wide range of momentum transfers in the SACOT-$chi$ general-mass scheme
In these proceedings, we apply the recently developed S-ACOT-MPS factorization scheme at the next-to-leading order to prompt charm production at hadron colliders. It provides a good agreement with experimental data on charm meson production measured
We calculate the cross section for the inclusive production of B mesons in pp and ppbar collisions at next-to-leading order in the general-mass variable-flavor-number scheme and show that a suitable choice of factorization scales leads to a smooth tr
Differential distributions for heavy quark production depend on the heavy quark mass and other momentum scales, which can yield additional large logarithms and inhibit accurate predictions. Logarithms involving the heavy quark mass can be summed in h