ترغب بنشر مسار تعليمي؟ اضغط هنا

General Mass Scheme for Jet Production in DIS

156   0   0.0 ( 0 )
 نشر من قبل Piotr Kotko
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a method for calculating DIS jet production cross sections in QCD at NLO accuracy with consistent treatment of heavy quarks. The scheme relies on the dipole subtraction method for jets, which we extend to all possible initial state splittings with heavy partons, so that the Aivazis-Collins-Olness-Tung massive collinear factorization scheme (ACOT) can be applied. As a first check of the formalism we recover the ACOT result for the heavy quark structure function using a dedicated Monte Carlo program.



قيم البحث

اقرأ أيضاً

We present a consistent treatment of heavy quarks for jet production in DIS at NLO accuracy. The method is based on the ACOT massive factorization scheme and dipole subtraction method for jets. The last had to be however extended in order to take int o account initial state splittings with heavy quarks. We constructed relevant kinematics and dipole splitting functions together with their integrals. We partially implemented the method in a MC program and checked against the known inclusive result for charm structure function.
We present a computation for inclusive charged-current deeply-inelastic scattering at NNLO (N$^2$LO) in QCD. Mass-dependent quark contributions are consistently included across a wide range of momentum transfers in the SACOT-$chi$ general-mass scheme . When appropriate, we further include N$^3$LO corrections in the zero-mass scheme. We show theoretical predictions for several experiments with neutrinos over a wide range of energies and at the upcoming Electron-Ion Collider. Our prediction reduces perturbative uncertainties to $sim$1%, sufficient for the high-precision objectives of future charged-current DIS measurements.
129 - Keping Xie , John M. Campbell , 2021
In these proceedings, we apply the recently developed S-ACOT-MPS factorization scheme at the next-to-leading order to prompt charm production at hadron colliders. It provides a good agreement with experimental data on charm meson production measured by LHCb at 7 and 13 TeV. The low-$p_T$ data are on the margins of the theoretical error bands, emphasizing the importance of including contributions beyond the next-to-leading order.
We calculate the cross section for the inclusive production of B mesons in pp and ppbar collisions at next-to-leading order in the general-mass variable-flavor-number scheme and show that a suitable choice of factorization scales leads to a smooth tr ansition to the fixed-flavor-number scheme. Our numerical results are in good agreement with data from the Tevatron and LHC experiments at small and at large transverse momenta.
Differential distributions for heavy quark production depend on the heavy quark mass and other momentum scales, which can yield additional large logarithms and inhibit accurate predictions. Logarithms involving the heavy quark mass can be summed in h eavy quark parton distribution functions in the ACOT factorization scheme. A second class of logarithms involving the heavy-quark transverse momentum can be summed using an extension of Collins-Soper-Sterman (CSS) formalism. We perform a systematic summation of logarithms of both types, thereby obtaining an accurate description of heavy-quark differential distributions at all energies. Our method essentially combines the ACOT and CSS approaches. As an example, we present angular distributions for bottom quarks produced in parity-conserving events at large momentum transfers Q at the ep collider HERA.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا