ﻻ يوجد ملخص باللغة العربية
A vertical X-shaped structure was recently reported in the Galactic bulge. Here we present evidence of a similar X-shaped structure in the Shen et al. (2010) bar/boxy bulge model that simultaneously matches the stellar kinematics successfully. The X-shaped structure is found in the central region of our bar/boxy bulge model, and is qualitatively consistent with the observed one in many aspects. End-to-end separations of the X-shaped structure in the radial and vertical directions are roughly 3 kpc and 1.8 kpc, respectively. The X-shaped structure contains about 7% of light in the boxy bulge region, but it is significant enough to be identified in observations. An X-shaped structure naturally arises in the formation of bar/boxy bulges, and is mainly associated with orbits trapped around the vertically-extended x_1 family. Like the bar in our model, the X-shaped structure tilts away from the Sun--Galactic center line by 20 degrees. The X-shaped structure becomes increasingly symmetric about the disk plane, so the observed symmetry may indicate that it formed at least a few billion years ago. The existence of the vertical X-shaped structure suggests that the formation of the Milky Way bulge is shaped mainly by internal disk dynamical instabilities.
We analyzed the distribution of the RC stars throughout Galactic bulge using 2MASS data. We mapped the position of the red clump in 1 sq.deg. size fields within the area |l|<=8.5deg and $3.5deg<=|b|<=8.5deg, for a total of 170 sq.deg. The red clump s
We explore the kinematics (both the radial velocity and the proper motion) of the vertical X-shaped feature in the Milky Way with an N-body bar/bulge model. From the solar perspective, the distance distribution of particles is double-peaked in fields
The Milky Way bulge has a boxy/peanut morphology and an X-shaped structure. This X-shape has been revealed by the `split in the red clump from star counts along the line of sight toward the bulge, measured from photometric surveys. This boxy, X-shape
We model the split red clump of the Galactic bulge in OGLE-III photometry, and compare the results to predictions from two N-body models. Our analysis yields precise maps of the brightness of the two red clumps, the fraction of stars in the more dist
By means of idealized, dissipationless N-body simulations which follow the formation and subsequent buckling of a stellar bar, we study the characteristics of boxy/peanut-shaped bulges and compare them with the properties of the stellar populations i