ﻻ يوجد ملخص باللغة العربية
Inelastic neutron scattering measurements on Ba(Fe0.925Mn0.075)2As2 manifest spin fluctuations at two different wavevectors in the Fe square lattice, (1/2,0) and (1/2,1/2), corresponding to the expected stripe spin-density wave order and checkerboard antiferromagnetic order, respectively. Below T_N=80 K, long-range stripe magnetic ordering occurs and sharp spin wave excitations appear at (1/2,0) while broad and diffusive spin fluctuations remain at (1/2,1/2) at all temperatures. Low concentrations of Mn dopants nucleate local moment spin fluctuations at (1/2,1/2) that compete with itinerant spin fluctuations at (1/2,0) and may disrupt the development of superconductivity.
We study the static charge correlation function in an one-band model on a square lattice. The Hamiltonian consist of effective hoppings of the electrons between the lattice sites and the Heisenberg Hamiltonian. Approximating the irreducible charge co
$^{75}$As Nuclear Magnetic (NMR) and Quadrupolar (NQR) Resonance were used, together with M{o}ssbauer spectroscopy, to investigate the magnetic state induced by Mn for Fe substitutions in F-doped LaFe$_{1-x}$Mn$_{x}$AsO superconductors. The results s
Study and comparison of over 30 examples of electron doped BaFe2As2 for transition metal (TM) = Co, Ni, Cu, and (Co/Cu mixtures) have lead to an understanding that the suppression of the structural/antiferromagnetic phase transition to low enough tem
We measured phonon frequencies and linewidths in doped and undoped BaFe2As2 single crystals by inelastic x-ray scattering and compared our results with density functional theory (DFT) calculations. In agreement with previous work, the calculated freq
Nematic orders emerge nearly universally in iron-based superconductors, but elucidating their origins is challenging because of intimate couplings between orbital and magnetic fluctuations. The iron-based ladder material BaFe2S3, which superconducts