ترغب بنشر مسار تعليمي؟ اضغط هنا

Transferring entanglement to the steady-state of flying qubits

147   0   0.0 ( 0 )
 نشر من قبل Jie Li
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The transfer of entanglement from optical fields to qubits provides a viable approach to entangling remote qubits in a quantum network. In cavity quantum electrodynamics, the scheme relies on the interaction between a photonic resource and two stationary intracavity atomic qubits. However, it might be hard in practice to trap two atoms simultaneously and synchronize their coupling to the cavities. To address this point, we propose and study entanglement transfer from cavities driven by an entangled external field to controlled flying qubits. We consider two exemplary non-Gaussian driving fields: NOON and entangled coherent states. We show that in the limit of long coherence time of the cavity fields, when the dynamics is approximately unitary, entanglement is transferred from the driving field to two atomic qubits that cross the cavities. On the other hand, a dissipation-dominated dynamics leads to very weakly quantum-correlated atomic systems, as witnessed by vanishing quantum discord.



قيم البحث

اقرأ أيضاً

We investigate the process of entanglement transfer from a three-mode quantized field to a system of three spatially separated qubits each one made of a two-level atom resonantly coupled to a cavity mode. The optimal conditions for entanglement trans fer, evaluated by atomic tripartite negativity, are derived for radiation prepared in qubit-like and Gaussian entangled states in terms of field parameters, atom-cavity interaction time, cavity mirror losses, and atomic preparation. For qubit-like states we found that for negligible cavity losses some states may completely transfer their entanglement to the atoms and/or be exactly mapped to the atomic state, whereas for Gaussian states we found a range of field parameters to obtain a large entanglement transfer. The purity of the three-qubit states and the entanglement of two-qubit subsystems are also discussed in some details.
We present a scheme for the dissipative preparation of an entangled steady state of two superconducting qubits in a circuit QED setup. Combining resonator photon loss, a dissipative process already present in the setup, with an effective two-photon m icrowave drive, we engineer an effective decay mechanism which prepares a maximally entangled state of the two qubits. This state is then maintained as the steady state of the driven, dissipative evolution. The performance of the dissipative state preparation protocol is studied analytically and verified numerically. In view of the experimental implementation of the presented scheme we investigate the effects of potential experimental imperfections and show that our scheme is robust to small deviations in the parameters. We find that high fidelities with the target state can be achieved both with state-of-the-art 3D, as well as with the more commonly used 2D transmons. The promising results of our study thus open a route for the demonstration of an entangled steady state in circuit QED.
Classical engines turn thermal resources into work, which is maximized for reversible operations. The quantum realm has expanded the range of useful operations beyond energy conversion, and incoherent resources beyond thermal reservoirs. This is the case of entanglement generation in a driven-dissipative protocol, which we hereby analyze as a continuous quantum machine. We show that for such machines the more irreversible the process the larger the concurrence. Maximal concurrence and entropy production are reached for the hot reservoir being at negative effective temperature, beating the limits set by classic thermal operations on an equivalent system.
We present a way to transfer maximally- or partially-entangled states of n single-photon-state (SPS) qubits onto n coherent-state (CS) qubits, by employing 2n microwave cavities coupled to a superconducting flux qutrit. The two logic states of a SPS qubit here are represented by the vacuum state and the single-photon state of a cavity, while the two logic states of a CS qubit are encoded with two coherent states of a cavity. Because of using only one superconducting qutrit as the coupler, the circuit architecture is significantly simplified. The operation time for the state transfer does not increase with the increasing of the number of qubits. When the dissipation of the system is negligible, the quantum state can be transferred in a deterministic way since no measurement is required. Furthermore, the higher-energy intermediate level of the coupler qutrit is not excited during the entire operation and thus decoherence from the qutrit is greatly suppressed. As a specific example, we numerically demonstrate that the high-fidelity transfer of a Bell state of two SPS qubits onto two CS qubits is achievable within the present-day circuit QED technology. Finally, it is worthy to note that when the dissipation is negligible, entangled states of n CS qubits can be transferred back onto n SPS qubits by performing reverse operations. This proposal is quite general and can be extended to accomplish the same task, by employing a natural or artificial atom to couple 2n microwave or optical cavities.
130 - A.Yu. Smirnov , M.H. Amin 2013
We study a system of qubits that are coupled to each other via only one degree of freedom represented, e.g., by $sigma_z$-operators. We prove that, if by changing the Hamiltonian parameters, a non-degenerate ground state of the system is continuously transformed in such a way that the expectation values of $sigma_z$ operators of at least two coupled qubits change, this ground state is entangled. Using this proof, we discuss connection between energy level anticrossings and ground state entanglement. Following the same line of thought, we introduce entanglement witnesses, based on cross-susceptibilities, that can detect ground state entanglement for any bipartition of the multi-qubit system. A witness for global ground state entanglement is also introduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا