Topographical fingerprints of many-body interference blocking in STM junctions on thin insulating films


الملخص بالإنكليزية

Negative differential conductance (NDC) is a non-linear transport phenomenon ubiquitous in molecular nanojunctions. Its physical origin can be the most diverse. In rotationally symmetric molecules with orbitally degenerate many-body states, it can be ascribed to interference effects. We establish in this paper a criterion to identify the interference blocking scenario by correlating the spectral and the topographical information achievable in an STM single molecule measurement. Simulations of current voltage characteristics and current maps for a Cu-Phthalocyanine (CuPc) on a thin insulating film are presented as experimentally relevant examples.

تحميل البحث