ترغب بنشر مسار تعليمي؟ اضغط هنا

Residual disorder and diffusion in thin Heusler alloy films

125   0   0.0 ( 0 )
 نشر من قبل Bernd Jenichen
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Co2FeSi/GaAs(110) and Co2FeSi/GaAs(111)B hybrid structures were grown by molecular-beam epitaxy and characterized by transmission electron microscopy (TEM) and X-ray diffraction. The films contained inhomogeneous distributions of ordered L2_1 and B2 phases. The average stoichiometry was controlled by lattice parameter measurements, however diffusion processes lead to inhomogeneities of the atomic concentrations and the degradation of the interface, influencing long-range order. An average long-range order of 30-60% was measured by grazing-incidence X-ray diffraction, i.e. the as-grown Co2FeSi films were highly but not fully ordered. Lateral inhomogeneities of the spatial distribution of long-range order in Co2FeSi were found using dark-field TEM images taken with superlattice reflections.



قيم البحث

اقرأ أيضاً

Thin films of topological insulators (TI) attract large attention because of expected topological effects from the inter-surface hybridization of Dirac points. However, these effects may be depleted by unexpectedly large energy smearing $Gamma$ of su rface Dirac points by the random potential of abundant Coulomb impurities. We show that in a typical TI film with large dielectric constant $sim 50$ sandwiched between two low dielectric constant layers, the Rytova-Chaplik-Entin-Keldysh modification of the Coulomb potential of a charge impurity allows a larger number of the film impurities to contribute to $Gamma$. As a result, $Gamma$ is large and independent of the TI film thickness $d$ for $d > 5$ nm. In thinner films $Gamma$ grows with decreasing $d$ due to reduction of screening by the hybridization gap. We study the surface conductivity away from the neutrality point and at the neutrality point. In the latter case, we find the maximum TI film thickness at which the hybridization gap is still able to make a TI film insulating and allow observation of the quantum spin Hall effect, $d_{max} sim 7$ nm.
Ferromagnetic resonance (FMR) technique has been used to study the magnetization relaxation processes and magnetic anisotropy in two different series of the Co2FeSi (CFS) Heusler alloy thin films, deposited on the Si(111) substrate by UHV sputtering. While the CFS films of fixed (50 nm) thickness, deposited at different substrate temperatures (TS) ranging from room temperature (RT) to 600^C, constitute the series-I, the CFS films with thickness t varying from 12 nm to 100 nm and deposited at 550^C make up the series-II. In series-I, the CFS films deposited at TS = RT and 200^C are completely amorphous, the one at TS = 300^C is partially crystalline, and those at TS equal 450^C, 550^C and 600^C are completely crystalline with B2 order. By contrast, all the CFS films in series-II are in the fully-developed B2 crystalline state. Irrespective of the strength of disorder and film thickness, angular variation of the resonance field in the film plane unambiguously establishes the presence of global in-plane uniaxial anisotropy. Angular variation of the linewidth in the film plane reveals that, in the CFS thin films of varying thickness, a crossover from the in-plane local four-fold symmetry (cubic anisotropy) to local two-fold symmetry (uniaxial anisotropy) occurs as t exceeds 50 nm. Gilbert damping parameter {alpha} decreases monotonously from 0.047 to 0.0078 with decreasing disorder strength (increasing TS) and jumps from 0.008 for the CFS film with t = 50 nm to 0.024 for the film with t equal 75 nm. Such variations of {alpha} with TS and t are understood in terms of the changes in the total (spin-up and spin-down) density of states at the Fermi level caused by the disorder and film thickness.
Half-metallic Heusler alloys are attracting considerable attention because of their unique half-metallic band structures which exhibit high spin polarization and yield huge magnetoresistance ratios. Besides serving as ferromagnetic electrodes, Heusle r alloys also have the potential to host spin-charge conversion which has been recently demonstrated in other ferromagnetic metals. Here, we report on the spin-charge conversion effect in the prototypical Heusler alloy NiMnSb. Spin currents were injected from Y3Fe5O12 into NiMnSb films by spin pumping, and then the spin currents were converted to charge currents via spin-orbit interactions. Interestingly, an unusual charge signal was observed with a sign change at low temperature, which can be manipulated by film thickness and ordering structure. It is found that the spin-charge conversion has two contributions. First, the interfacial contribution causes a negative voltage signal, which is almost constant versus temperature. The second contribution is temperature dependent because it is dominated by minority states due to thermally excited magnons in the bulk part of the film. This work provides a pathway for the manipulation of spin-charge conversion in ferromagnetic metals by interface-bulk engineering for spintronic devices.
We determine experimentally the spin structure of half-metallic Co2FeAl0.4Si0.6 Heusler alloy elements using magnetic microscopy. Following magnetic saturation, the dominant magnetic states consist of quasi-uniform configurations, where a strong infl uence from the magnetocrystalline anisotropy is visible. Heating experiments show the stability of the spin configuration of domain walls in confined geometries up to 800 K. The switching temperature for the transition from transverse to vortex walls in ring elements is found to increase with ring width, an effect attributed to structural changes and consequent changes in magnetic anisotropy, which start to occur in the narrower elements at lower temperatures.
The anomaly in the anomalous Nernst effect (ANE) was observed for a C1b-type NiMnSb half-Heusler alloy thin film deposited on a MgO (001) substrate. The Nernst angle ({theta}ANE) showed maximum peak with decreasing temperature and reached 0.15 at 80 K, which is considered to be brought by the cross-over from half-metal to normal ferromagnet in NiMnSb at low temperature. This anomaly was also observed for the transport properties, that is, both the resistivity and the anomalous Hall resistivity in the same temperature range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا