ترغب بنشر مسار تعليمي؟ اضغط هنا

Impulsive acceleration of coronal mass ejections: II. Relation to SXR flares and filament eruptions

164   0   0.0 ( 0 )
 نشر من قبل Bianca Bein
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using high time cadence images from the STEREO EUVI, COR1 and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 CMEs in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events which were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration, and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME accleration ends after the SXR peak time (for 77% of the events). In ~60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than pm5 min, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.



قيم البحث

اقرأ أيضاً

310 - B. M. Bein 2011
We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs), from their initiation, through the impulsive acceleration to the propagation phase. For a set of 95 CMEs we deriv ed detailed height, velocity and acceleration profiles and statistically analysed characteristic CME parameters: peak acceleration, peak velocity, acceleration duration, initiation height, height at peak velocity, height at peak acceleration and size of the CME source region. The CME peak accelerations derived range from 20 to 6800 m s^2 and are inversely correlated to the acceleration duration and to the height at peak acceleration. 74% of the events reach their peak acceleration at heights below 0.5 Rsun. CMEs which originate from compact sources low in the corona are more impulsive and reach higher peak accelerations at smaller heights. These findings can be explained by the Lorentz force, which drives the CME accelerations and decreases with height and CME size.
Context: Metric type II bursts are the most direct diagnostic of shock waves in the solar corona. Aims: There are two main competing views about the origin of coronal shocks: that they originate in either blast waves ignited by the pressure pulse o f a flare or piston-driven shocks due to coronal mass ejections (CMEs). We studied three well-observed type II bursts in an attempt to place tighter constraints on their origins. Methods: The type II bursts were observed by the ARTEMIS radio spectrograph and imaged by the Nanc{c}ay Radioheliograph (NRH) at least at two frequencies. To take advantage of projection effects, we selected events that occurred away from disk center. Results: In all events, both flares and CMEs were observed. In the first event, the speed of the shock was about 4200 km/s, while the speed of the CME was about 850 km/s. This discrepancy ruled out the CME as the primary shock driver. The CME may have played a role in the ignition of another shock that occurred just after the high speed one. A CME driver was excluded from the second event as well because the CMEs that appeared in the coronagraph data were not synchronized with the type II burst. In the third event, the kinematics of the CME which was determined by combining EUV and white light data was broadly consistent with the kinematics of the type II burst, and, therefore, the shock was probably CME-driven. Conclusions: Our study demonstrates the diversity of conditions that may lead to the generation of coronal shocks.
71 - Y. Kawabata , Y. Iida , T. Doi 2018
Statistical dependencies among features of coronal mass ejections (CMEs), solar flares, and sigmoidal structures in soft-X-ray images were investigated. We applied analysis methods to all the features in the same way in order to investigate the repro ducibility of the correlations among them, which may be found from the combination of previous statistical studies. The samples of 211 M-class and X-class flares, which were observed between 2006 and 2015 by Hinode/X-ray telescope, Solar and Heliospheric Observatory/Large Angle and Spectrometric Coronagraph, and GOES, were examined statistically. Five kinds of analysis were performed: Occurrence rate analysis, linear-correlation analysis, association analysis, the Kolmogorov--Smirnov test, and Anderson-Darling test. The analyses show three main results. First, the sigmoidal structure and long duration events (LDEs) has stronger dependency on the CME occurrence than large X-ray class events in on-disk events. Second, for the limb events, the significant dependency exists between LDEs and CME occurrence, and between X-ray class and CME occurrence. Third, there existed 32.4% of on-disk flare events, which had sigmoidal structure and were not accompanied by CMEs. However, the occurrence probability of CMEs without sigmoidal structures is very small, 8.8 %, in on-disk events. While the first and second results are consistent with previous studies, we newly provided the difference between the on-disk events and limb events. The third result that non-sigmoidal regions produce less eruptive events is also different from previous results. We suggest that sigmoidal structures in soft X-ray images will be a helpful feature for CME prediction regarding on-disk flare events.
In this study we synthesize the results of four previous studies on the global energetics of solar flares and associated coronal mass ejections (CMEs), which include magnetic, thermal, nonthermal, and CME energies in 399 solar M and X-class flare eve nts observed during the first 3.5 years of the Solar Dynamics Observatory (SDO) mission. Our findings are: (1) The sum of the mean nonthermal energy of flare-accelerated particles ($E_{mathrm{nt}}$), the energy of direct heating ($E_{mathrm{dir}}$), and the energy in coronal mass ejections ($E_{mathrm{CME}}$), which are the primary energy dissipation processes in a flare, is found to have a ratio of $(E_{mathrm{nt}}+E_{mathrm{dir}}+ E_{mathrm{CME}})/E_{mathrm{mag}} = 0.87 pm 0.18$, compared with the dissipated magnetic free energy $E_{mathrm{mag}}$, which confirms energy closure within the measurement uncertainties and corroborates the magnetic origin of flares and CMEs; (2) The energy partition of the dissipated magnetic free energy is: $0.51pm0.17$ in nonthermal energy of $ge 6$ keV electrons, $0.17pm0.17$ in nonthermal $ge 1$ MeV ions, $0.07pm0.14$ in CMEs, and $0.07pm0.17$ in direct heating; (3) The thermal energy is almost always less than the nonthermal energy, which is consistent with the thick-target model; (4) The bolometric luminosity in white-light flares is comparable with the thermal energy in soft X-rays (SXR); (5) Solar Energetic Particle (SEP) events carry a fraction $approx 0.03$ of the CME energy, which is consistent with CME-driven shock acceleration; and (6) The warm-target model predicts a lower limit of the low-energy cutoff at $e_c approx 6$ keV, based on the mean differential emission measure (DEM) peak temperature of $T_e=8.6$ MK during flares. This work represents the first statistical study that establishes energy closure in solar flare/CME events.
Solar energetic particle (SEP) events are related to flares and coronal mass ejections (CMEs). This work is a new investigation of statistical relationships between SEP peak intensities - deka-MeV protons and near-relativistic electrons - and charact eristic quantities of the associated solar activity. We consider the speed of the CME and quantities describing the flare-related energy release: peak flux and fluence of soft X-ray (SXR) emission, fluence of microwave emission. The sample comprises 38 SEP events associated with strong SXR bursts (classes M and X) in the western solar hemisphere between 1997 and 2006, and where the flare-related particle acceleration is accompanied by radio bursts indicating electron escape to the interplanetary space. The main distinction of the present statistical analysis from earlier work is that besides the classical Pearson correlation coefficient the partial correlation coefficients are calculated in order to disentangle the effects of correlations between the solar parameters themselves. The classical correlation analysis shows the usual picture of correlations with broad scatter between SEP peak intensities and the different parameters of solar activity, and strong correlations between the solar activity parameters themselves. The partial correlation analysis shows that the only parameters that affect significantly the SEP intensity are the CME speed and the SXR fluence. The SXR peak flux and the microwave fluence have no additional contribution. We conclude that these findings bring statistical evidence that both flare acceleration and CME shock acceleration contribute to the deka-MeV proton and near-relativistic electron populations in large SEP events.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا