ترغب بنشر مسار تعليمي؟ اضغط هنا

A van der Waals density functional study of chloroform and bromoform on graphene

325   0   0.0 ( 0 )
 نشر من قبل Elsebeth Schroder
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A calculational study of the trihalomethanes chloroform (CHCl_3) and bromoform (CHBr_3) adsorbed on graphene is presented. The study uses the van der Waals density functional method vdW-DF to obtain adsorption energies and adsorption structures for these molecules of environmental concern. In this study chloroform is found to adsorb with the H atom pointing away from graphene, with adsorption energy 357 meV (34.4 kJ/mol). For bromoform the calculated adsorption energy is 404 meV (39.0 kJ/mol). The corrugation of graphene as seen by chloroform is small, the difference in adsorption energy along the graphene plane is less than 6 meV.



قيم البحث

اقرأ أيضاً

The past few years has brought renewed focus on the physics behind the class of materials characterized by long-range interactions and wide regions of low electron density, sparse matter. There is now much work on developing the appropriate algorithm s and codes able to correctly describe this class of materials within a parameter-free quantum physical description. In particular, van der Waals (vdW) forces play a major role in building up material cohesion in sparse matter. This work presents an application to the vanadium pentoxide (V2O5) bulk structure of t
415 - E. Hazrati , G. A. de Wijs , 2014
Modeling layered intercalation compounds from first principles poses a problem, as many of their properties are determined by a subtle balance between van der Waals interactions and chemical or Madelung terms, and a good description of van der Waals interactions is often lacking. Using van der Waals density functionals we study the structures, phonons and energetics of the archetype layered intercalation compound Li-graphite. Intercalation of Li in graphite leads to stable systems with calculated intercalation energies of $-0.2$ to $-0.3$~eV/Li atom, (referred to bulk graphite and Li metal). The fully loaded stage 1 and stage 2 compounds LiC$_6$ and Li$_{1/2}$C$_6$ are stable, corresponding to two-dimensional $sqrt3timessqrt3$ lattices of Li atoms intercalated between two graphene planes. Stage $N>2$ structures are unstable compared to dilute stage 2 compounds with the same concentration. At elevated temperatures dilute stage 2 compounds easily become disordered, but the structure of Li$_{3/16}$C$_6$ is relatively stable, corresponding to a $sqrt7timessqrt7$ in-plane packing of Li atoms. First-principles calculations, along with a Bethe-Peierls model of finite temperature effects, allow for a microscopic description of the observed voltage profiles.
We propose a second version of the van der Waals density functional (vdW-DF2) of Dion et al. [Phys. Rev. Lett. 92, 246401 (2004)], employing a more accurate semilocal exchange functional and the use of a large-N asymptote gradient correction in deter mining the vdW kernel. The predicted binding energy, equilibrium separation, and potential-energy curve shape are close to those of accurate quantum chemical calculations on 22 duplexes. We anticipate the enabling of chemically accurate calculations in sparse materials of importance for condensed-matter, surface, chemical, and biological physics.
The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules on graphene has been investigated using density functional theory with taking into account nonlocal correlation effects by means of vdW-DF approach. It is shown that the van der Waals interaction plays a crucial role in the formation of chemical bonding between graphene and halogen molecules, and is therefore important for a proper description of adsorption in this system. In-plane orientation of the molecules has been found to be more stable than the orientation perpendicular to the graphene layer. In the cases of F$_2$, Br$_2$ and I$_2$ we also found an ionic contribution to the binding energy, slowly vanishing with distance. Analysis of the electronic structure shows that ionic interaction arises due to the charge transfer from graphene to the molecules. Furthermore, we found that the increase of impurity concentration leads to the conduction band formation in graphene due to interaction between halogen molecules. In addition, graphite intercalation by halogen molecules has been investigated. In the presence of halogen molecules the binding between graphite layers becomes significantly weaker, which is in accordance with the results of recent experiments on sonochemical exfoliation of intercalated graphite.
Large biomolecular systems, whose function may involve thousands of atoms, cannot easily be addressed with parameter-free density functional theory (DFT) calculations. Until recently a central problem was that such systems possess an inherent sparsen ess, that is, they are formed from components that are mutually separated by low-electron-density regions where dispersive forces contribute significantly to the cohesion and behavior. The introduction of, for example, the van der Waals density functional (vdW-DF) method [PRL 92, 246401 (2004)] has addressed part of this sparse-matter system challenge. However, while a vdW-DF study is often as computationally efficient as a study performed in the generalized gradient approximation, the scope of large-sparse-matter DFT is still limited by computer time and memory. It is costly to self-consistently determine the electron wavefunctions and hence the kinetic-energy repulsion. In this paper we propose and evaluate an adaption of the Harris scheme [PRB 31, 1770 (1985)]. This is done to speed up non-selfconsistent vdW-DF studies of molecular-system interaction energies. Also, the Harris-type analysis establishes a formal link between dispersion-interaction effects on the effective potential for electron dynamics and the impact of including selfconsistency in vdW-DF calculations [PRB 76, 125112 (2007)].
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا