ﻻ يوجد ملخص باللغة العربية
The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Scientific programs include pulsars, supernova remnants, general transient searches, radio recombination lines, solar and Jupiter bursts, investigations into the dark ages using redshifted hydrogen, and ionospheric phenomena. Upon completion, LWA will consist of 53 phased array stations distributed across a region over 400 km in diameter. Each station consists of 256 pairs of dipole-type antennas whose signals are formed into beams, with outputs transported to a central location for high-resolution aperture synthesis imaging. The resulting image sensitivity is estimated to be a few mJy (5sigma, 8 MHz, 2 polarizations, 1 h, zenith) from 20-80 MHz; with angular resolution of a few arcseconds. Additional information is online at http://lwa.unm.edu. Partners in the LWA project include LANL, JPL, NRL, UNM, NMT, and Virginia Tech. The full LWA will be a powerful instrument for the study of particle acceleration mechanisms in AGN. Even with the recently completed first station of the LWA, called LWA1, we can begin spectral studies of AGN radio lobes. These can be combined with Fermi observations. Furthermore we have an ongoing project to observe Crab Giant Pulses in concert with Fermi. In addition to these pointed studies, the LWA1 images the sky down to declination -30 degrees daily. This is quite complimentary to Fermis daily images of the sky.
The Long Wavelength Array Software Library (LSL) is a Python module that provides a collection of utilities to analyze and export data collected at the first station of the Long Wavelength Array, LWA1. Due to the nature of the data format and large-N
The Long Wavelength Array (LWA) will be a new multi-purpose radio telescope operating in the frequency range 10-88 MHz. Upon completion, LWA will consist of 53 phased array stations distributed over a region about 400 km in diameter in the state of N
This paper presents a search for radio transients at a frequency of 73.8 MHz (4 m wavelength) using the all-sky imaging capabilities of the Long Wavelength Demonstrator Array (LWDA). The LWDA was a 16-dipole phased array telescope, located on the sit
The first station of the Long Wavelength Array (LWA1) was completed in April 2011 and is currently performing observations resulting from its first call for proposals in addition to a continuing program of commissioning and characterization observati
In its initial deployment, the Non-Imaging CHErenkov Array (NICHE)will measure the flux and nuclear composition of cosmic rays from below 10^16 eV to 10^18 eV by using measurements of the amplitude and time-spread of the air-shower Cherenkov signal t