ﻻ يوجد ملخص باللغة العربية
The status of heat and work in nonequilibrium thermodynamics is quite confusing and non-unique at present with conflicting interpretations even after a long history of the first law in terms of exchange heat and work, and is far from settled. Moreover, the exchange quantities lack certain symmetry. By generalizing the traditional concept to also include their time-dependent irreversible components allows us to express the first law in a symmetric form dE(t)= dQ(t)-dW(t) in which dQ(t) and work dW(t) appear on an equal footing and possess the symmetry. We prove that irreversible work turns into irreversible heat. Statistical analysis in terms of microstate probabilities p_{i}(t) uniquely identifies dW(t) as isentropic and dQ(t) as isometric (see text) change in dE(t); such a clear separation does not occur for exchange quantities. Hence, our new formulation of the first law provides tremendous advantages and results in an extremely useful formulation of non-equilibrium thermodynamics, as we have shown recently. We prove that an adiabatic process does not alter p_{i}. All these results remain valid no matter how far the system is out of equilibrium. When the system is in internal equilibrium, dQ(t)equivT(t)dS(t) in terms of the instantaneous temperature T(t) of the system, which is reminiscent of equilibrium. We demonstrate that p_{i}(t) has a form very different from that in equilibrium. The first and second laws are no longer independent so that we need only one law, which is again reminiscent of equilibrium. The traditional formulas like the Clausius inequality {oint}d_{e}Q(t)/T_{0}<0, etc. become equalities {oint}dQ(t)/T(t)equiv0, etc, a quite remarkable but unexpected result in view of irreversibility. We determine the irreversible components in two simple cases to show the usefulness of our approach; here, the traditional formulation is of no use.
By generalizing the traditional concept of heat dQ and work dW to also include their time-dependent irreversible components d_{i}Q and d_{i}W allows us to express them in terms of the instantaneous internal temperature T(t) and pressure P(t), whereas
The second law of classical thermodynamics, based on the positivity of the entropy production, only holds for deterministic processes. Therefore the Second Law in stochastic quantum thermodynamics may not hold. By making a fundamental connection betw
Historically, the thermodynamic behavior of gasses was described first and the derived equations were adapted to solids. It is suggested that the current thermodynamic description of solid phase is still incomplete because the isothermal work done on
We propose a variational formulation for the nonequilibrium thermodynamics of discrete open systems, i.e., discrete systems which can exchange mass and heat with the exterior. Our approach is based on a general variational formulation for systems wit
According to thermodynamics, the inevitable increase of entropy allows the past to be distinguished from the future. From this perspective, any clock must incorporate an irreversible process that allows this flow of entropy to be tracked. In addition