ﻻ يوجد ملخص باللغة العربية
Let $(X, T)$ be a topological dynamical system. Denote by $h (T, K)$ and $h^B (T, K)$ the covering entropy and dimensional entropy of $Ksubseteq X$, respectively. $(X, T)$ is called D-{it lowerable} (resp. {it lowerable}) if for each $0le hle h (T, X)$ there is a subset (resp. closed subset) $K_h$ with $h^B (T, K_h)= h$ (resp. $h (T, K_h)= h$); is called D-{it hereditarily lowerable} (resp. {it hereditarily lowerable}) if each Souslin subset (resp. closed subset) is D-lowerable (resp. lowerable). In this paper it is proved that each topological dynamical system is not only lowerable but also D-lowerable, and each asymptotically $h$-expansive system is D-hereditarily lowerable. A minimal system which is lowerable and not hereditarily lowerable is demonstrated.
Let $(X, T)$ be a topological dynamical system (TDS), and $h (T, K)$ the topological entropy of a subset $K$ of $X$. $(X, T)$ is {it lowerable} if for each $0le hle h (T, X)$ there is a non-empty compact subset with entropy $h$; is {it hereditarily l
In this note a notion of generalized topological entropy for arbitrary subsets of the space of all sequences in a compact topological space is introduced. It is shown that for a continuous map on a compact space the generalized topological entropy of
We study the topological entropy of hom tree-shifts and show that, although the topological entropy is not conjugacy invariant for tree-shifts in general, it remains invariant for hom tree higher block shifts. In doi:10.1016/j.tcs.2018.05.034 and doi
Let $X$ be a compact metric space and $T:Xlongrightarrow X$ be continuous. Let $h^*(T)$ be the supremum of topological sequence entropies of $T$ over all subsequences of $mathbb Z_+$ and $S(X)$ be the set of the values $h^*(T)$ for all continuous map
Let $mathcal{M}(X)$ be the space of Borel probability measures on a compact metric space $X$ endowed with the weak$^ast$-topology. In this paper, we prove that if the topological entropy of a nonautonomous dynamical system $(X,{f_n}_{n=1}^{+infty})$