ﻻ يوجد ملخص باللغة العربية
V393 Scorpii is a Double Periodic Variable characterized by a relatively stable non-orbital photometric cycle of 253 days. Mennickent et al. argue for the presence of a massive optically thick disc around the more massive B-type component and describe the evolutionary stage of the system. In this paper we analyze the behavior of the main spectroscopic optical lines during the long non-orbital photometric cycle. We study the radial velocity of the donor determining their orbital elements and find a small but significant orbital eccentricity (e = 0.04). The donor spectral features are modeled and removed from the spectrum at every observing epoch using the light-curve model given by Mennickent et al. We find that the line emission is larger during eclipses and mostly comes from a bipolar wind. We find that the long cycle is explained in terms of a modulation of the wind strength; the wind has a larger line and continuum emissivity on the high state. We report the discovery of highly variable chromospheric emission in the donor, as revealed by Doppler maps of the emission lines MgII 4481 and CI 6588. We discuss notable and some novel spectroscopic features like discrete absorption components, especially visible at blue-depressed OI 7773 absorption wings during the second half-cycle, Balmer double emission with V/R-curves showing Z-type and S-type excursions around secondary and main eclipse, respectively, and H_beta emission wings extending up to +- 2000 km/s. We discuss possible causes for these phenomena and for their modulations with the long cycle.
We give a brief report on spectroscopic properties of V 393 Scorpii. H alfa emission and shape and radial velocity of He I 5875 are modulated with the long cycle. The long cycle is explained as a relaxation cycle in the circumprimary disc, that cumul
V393 Scorpii is a member of the subclass of Algols dubbed Double Periodic Variables (DPVs). These are semidetached binaries with B-type primaries showing a long-photometric cycle lasting in average 33 times the orbital period. We describe the behavio
We describe the results of the world-wide observing campaign of the highly eccentric Be binary system delta Scorpii 2011 periastron passage which involved professional and amateur astronomers. Our spectroscopic observations provided a precise measure
S106 is one of the best known bipolar HII regions, thoroughly studied and modelled at infrared, submillimeter and millimeter wavelengths, and it is one of the nearest examples of the late stages of massive star formation in which the newly formed sta
The types of instability in the interacting binary stars are reviewed. The project Inter-Longitude Astronomy is a series of smaller projects on concrete stars or groups of stars. It has no special funds, and is supported from resources and grants of