ﻻ يوجد ملخص باللغة العربية
We study the internal dynamics of an elementary quantum system placed close to a body held at a temperature different from that of the surrounding radiation. We derive general expressions for lifetime and density matrix valid for bodies of arbitrary geometry and dielectric permittivity. Out of equilibrium, the thermalization process and steady states become both qualitatively and quantitatively significantly different from the case of radiation at thermal equilibrium. For the case of a three-level atom close to a slab of finite thickness, we predict the occurrence of population inversion and an efficient cooling mechanism for the quantum system, whose effective internal temperature can be driven to values much lower than both involved temperatures. Our results show that non-equilibrium configurations provide new promising ways to control the state of an atomic system.
We address the problem of heat transport in a chain of coupled quantum harmonic oscillators, exposed to the influences of local environments of various nature, stressing the effects that the specific nature of the environment has on the phenomenology
We discuss how the thermalization of an elementary quantum system is modified when the system is placed in an environment out of thermal equilibrium. To this aim we provide a detailed investigation of the dynamics of an atomic system placed close to
It is often the case that the environment of a quantum system may be described as a bath of oscillators with Ohmic density of states. In turn, the precise characterization of these classes of environments is a crucial tool to engineer decoherence or
Different non-equilibrium situations have recently been considered when studying the thermal Casimir--Polder interaction with a body. We show that the Keldysh Green function method provides a very general common framework for such studies where non-e