ترغب بنشر مسار تعليمي؟ اضغط هنا

An Unsupervised Dynamic Image Segmentation using Fuzzy Hopfield Neural Network based Genetic Algorithm

232   0   0.0 ( 0 )
 نشر من قبل Amiya Halder
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper proposes a Genetic Algorithm based segmentation method that can automatically segment gray-scale images. The proposed method mainly consists of spatial unsupervised grayscale image segmentation that divides an image into regions. The aim of this algorithm is to produce precise segmentation of images using intensity information along with neighborhood relationships. In this paper, Fuzzy Hopfield Neural Network (FHNN) clustering helps in generating the population of Genetic algorithm which there by automatically segments the image. This technique is a powerful method for image segmentation and works for both single and multiple-feature data with spatial information. Validity index has been utilized for introducing a robust technique for finding the optimum number of components in an image. Experimental results shown that the algorithm generates good quality segmented image.



قيم البحث

اقرأ أيضاً

Automatic liver segmentation in 3D medical images is essential in many clinical applications, such as pathological diagnosis of hepatic diseases, surgical planning, and postoperative assessment. However, it is still a very challenging task due to the complex background, fuzzy boundary, and various appearance of liver. In this paper, we propose an automatic and efficient algorithm to segment liver from 3D CT volumes. A deep image-to-image network (DI2IN) is first deployed to generate the liver segmentation, employing a convolutional encoder-decoder architecture combined with multi-level feature concatenation and deep supervision. Then an adversarial network is utilized during training process to discriminate the output of DI2IN from ground truth, which further boosts the performance of DI2IN. The proposed method is trained on an annotated dataset of 1000 CT volumes with various different scanning protocols (e.g., contrast and non-contrast, various resolution and position) and large variations in populations (e.g., ages and pathology). Our approach outperforms the state-of-the-art solutions in terms of segmentation accuracy and computing efficiency.
Compressed domain image classification performs classification directly on compressive measurements acquired from the single-pixel camera, bypassing the image reconstruction step. It is of great importance for extending high-speed object detection an d classification beyond the visible spectrum in a cost-effective manner especially for resource-limited platforms. Previous neural network methods require training a dedicated neural network for each different measurement rate (MR), which is costly in computation and storage. In this work, we develop an efficient training scheme that provides a neural network with dynamic-rate property, where a single neural network is capable of classifying over any MR within the range of interest with a given sensing matrix. This training scheme uses only a few selected MRs for training and the trained neural network is valid over the full range of MRs of interest. We demonstrate the performance of the dynamic-rate neural network on datasets of MNIST, CIFAR-10, Fashion-MNIST, COIL-100, and show that it generates approximately equal performance at each MR as that of a single-rate neural network valid only for one MR. Robustness to noise of the dynamic-rate model is also demonstrated. The dynamic-rate training scheme can be regarded as a general approach compatible with different types of sensing matrices, various neural network architectures, and is a valuable step towards wider adoption of compressive inference techniques and other compressive sensing related tasks via neural networks.
Hyperparameter optimization is a challenging problem in developing deep neural networks. Decision of transfer layers and trainable layers is a major task for design of the transfer convolutional neural networks (CNN). Conventional transfer CNN models are usually manually designed based on intuition. In this paper, a genetic algorithm is applied to select trainable layers of the transfer model. The filter criterion is constructed by accuracy and the counts of the trainable layers. The results show that the method is competent in this task. The system will converge with a precision of 97% in the classification of Cats and Dogs datasets, in no more than 15 generations. Moreover, backward inference according the results of the genetic algorithm shows that our method can capture the gradient features in network layers, which plays a part on understanding of the transfer AI models.
In the present paper, an effort has been made for storing and recalling images with Hopfield Neural Network Model of auto-associative memory. Images are stored by calculating a corresponding weight matrix. Thereafter, starting from an arbitrary confi guration, the memory will settle on exactly that stored image, which is nearest to the starting configuration in terms of Hamming distance. Thus given an incomplete or corrupted version of a stored image, the network is able to recall the corresponding original image. The storing of the objects has been performed according to the Hopfield algorithm explained below. Once the net has completely learnt this set of input patterns, a set of testing patterns containing degraded images will be given to the net. Then the Hopfield net will tend to recall the closest matching pattern for the given degraded image. The simulated results show that Hopfield model is the best for storing and recalling images.
Hierarchical image segmentation provides region-oriented scalespace, i.e., a set of image segmentations at different detail levels in which the segmentations at finer levels are nested with respect to those at coarser levels. Most image segmentation algorithms, such as region merging algorithms, rely on a criterion for merging that does not lead to a hierarchy, and for which the tuning of the parameters can be difficult. In this work, we propose a hierarchical graph based image segmentation relying on a criterion popularized by Felzenzwalb and Huttenlocher. We illustrate with both real and synthetic images, showing efficiency, ease of use, and robustness of our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا