ﻻ يوجد ملخص باللغة العربية
We have performed an analysis of the diffuse gamma-ray emission with the Fermi Large Area Telescope in the Milky Way Halo region searching for a signal from dark matter annihilation or decay. In the absence of a robust dark matter signal, constraints are presented. We consider both gamma rays produced directly in the dark matter annihilation/decay and produced by inverse Compton scattering of the e+e- produced in the annihilation/decay. Conservative limits are derived requiring that the dark matter signal does not exceed the observed diffuse gamma-ray emission. A second set of more stringent limits is derived based on modeling the foreground astrophysical diffuse emission using the GALPROP code. Uncertainties in the height of the diffusive cosmic-ray halo, the distribution of the cosmic-ray sources in the Galaxy, the index of the injection cosmic-ray electron spectrum and the column density of the interstellar gas are taken into account using a profile likelihood formalism, while the parameters governing the cosmic-ray propagation have been derived from fits to local cosmic-ray data. The resulting limits impact the range of particle masses over which dark matter thermal production in the early Universe is possible, and challenge the interpretation of the PAMELA/Fermi-LAT cosmic ray anomalies as annihilation of dark matter.
The first published Fermi large area telescope (Fermi-LAT) measurement of the isotropic diffuse gamma-ray emission is in good agreement with a single power law, and is not showing any signature of a dominant contribution from dark matter sources in t
Annihilation of dark matter particles in cosmological halos (including a halo of the Milky Way) contributes to the diffuse gamma-ray background (DGRB). As this contribution will appear anisotropic in the sky, one can use the angular power spectrum of
The extended excess toward the Galactic Center (GC) in gamma rays inferred from Fermi-LAT observations has been interpreted as being due to dark matter (DM) annihilation. Here, we perform new likelihood analyses of the GC and show that, when includin
An excess of $gamma$ rays in the data measured by the Fermi Large Area Telescope in the direction of the Galactic center has been reported in several publications. This excess, labeled as the Galactic center excess (GCE), is detected analyzing the da
Observations of diffuse Galactic gamma ray emission (DGE) by the Fermi Large Area Telescope (LAT) allow a detailed study of cosmic rays and the interstellar medium. However, diffuse emission models of the inner Galaxy underpredict the Fermi-LAT data