ﻻ يوجد ملخص باللغة العربية
Using a Fermi-Bose mixture of ultra-cold atoms in an optical lattice, we construct a quantum simulator for a U(1) gauge theory coupled to fermionic matter. The construction is based on quantum links which realize continuous gauge symmetry with discrete quantum variables. At low energies, quantum link models with staggered fermions emerge from a Hubbard-type model which can be quantum simulated. This allows us to investigate string breaking as well as the real-time evolution after a quench in gauge theories, which are inaccessible to classical simulation methods.
We show that gauge invariant quantum link models, Abelian and non-Abelian, can be exactly described in terms of tensor networks states. Quantum link models represent an ideal bridge between high-energy to cold atom physics, as they can be used in col
By means of the discrete truncated Wigner approximation we study dynamical phase transitions arising in the steady state of transverse-field Ising models after a quantum quench. Starting from a fully polarized ferromagnetic initial condition these tr
In the previous works, we proposed atomic quantum simulations of the U(1) gauge-Higgs model by ultra-cold Bose gases. By studying extended Bose-Hubbard models (EBHMs) including long-range repulsions, we clarified the locations of the confinement, Cou
We investigate the evolution of string order in a spin-1 chain following a quantum quench. After initializing the chain in the Affleck-Kennedy-Lieb-Tasaki state, we analyze in detail how string order evolves as a function of time at different length
Artificial magnetic fields and spin-orbit couplings have been recently generated in ultracold gases in view of realizing topological states of matter and frustrated magnetism in a highly-controllable environment. Despite being dynamically tunable, su