ترغب بنشر مسار تعليمي؟ اضغط هنا

A Proper Motion Study of the Haro 6-10 Outflow: Evidence for a Subarcsecond Binary

121   0   0.0 ( 0 )
 نشر من قبل H. Alwyn Wootten
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present single-dish and VLBI observations of an outburst of water maser emission from the young binary system Haro 6-10. Haro 6-10 lies in the Taurus molecular cloud and contains a visible T Tauri star with an infrared companion 1.3 north. Using the Very Long Baseline Array, we obtained five observations spanning 3 months and derived absolute positions for 20 distinct maser spots. Three of the masers can be traced over 3 or more epochs, enabling us to extract absolute proper motions and tangential velocities. We deduce that the masers represent one side of a bipolar outflow that lies nearly in the plane of the sky with an opening angle of ~45deg. They are located within 50 mas of the southern component of the binary, the visible T Tauri star Haro 6-10S. The mean position angle on the sky of the maser proper motions (~220deg) suggests they are related to the previously observed giant Herbig-Haro (HH) flow which includes HH410, HH411, HH412, and HH184A-E. A previously observed HH jet and extended radio continuum emission (mean position angle of ~190deg) must also originate in the vicinity of Haro6-10S and represent a second, distinct outflow in this region. We propose that a yet unobserved companion within 150 mas of Haro6-10S is responsible for the giant HH/maser outflow while the visible star is associated with the HH jet. Despite the presence of H_2 emission in the spectrum of the northern component of the binary, Haro6-10N, none of outflows/jets can be tied directly to this young stellar object.



قيم البحث

اقرأ أيضاً

We present high sensitivity 12CO and 13CO (1-0) molecular line maps covering the full extent of the parsec scale Haro~6-10 Herbig-Haro (HH) flow. We report the discovery of a molecular CO outflow along the axis of parsec-scale HH flow. Previous molec ular studies missed the identification of the outflow probably due to their smaller mapping area and the confusing spectral features present towards the object. Our detailed molecular line study of the full 1.6 pc extent of the optical flow shows evidence for both blueshifted and redshifted gas set in motion by Haro~6-10 activity. The molecular outflow is centered at Haro~6-10, with redshifted gas being clumpy and directed towards the northeast, while blueshifted gas is in the southwest direction. The molecular gas terminates well within the cloud, short of the most distant HH objects of the optical flow. Contamination from an unrelated cloud along the same line of sight prevents a thorough study of the blueshifted outflow lobe and the mass distribution at the lowest velocities in both lobes. The cloud core in which Haro~6-10 is embedded is filamentary and flattened in the east-west direction. The total cloud mass is calculated from 13CO(1-0) to be ~200Msun. The lower limit of the mass associated with the outflow is ~0.25Msun.
We have derived the absolute proper motion (PM) of the globular cluster M55 using a large set of CCD images collected with the du Pont telescope between 1997 and 2008. We find (PM_RA*cos(DEC), PM_DEC) = (-3.31 +/- 0.10, -9.14 +/- 0.15) mas/yr relativ e to background galaxies. Membership status was determined for 16 945 stars with 14<V<21 from the central part of the cluster. The PM catalogue includes 52 variables of which 43 are probable members of M55. This sample is dominated by pulsating blue straggler stars but also includes 5 eclipsing binaries, three of which are main sequence objects. The survey also identified several candidate blue, yellow and red straggler stars belonging to the cluster. We detected 15 likely members of the Sgr dSph galaxy located behind M55. The average PM for these stars was measured to be (PM_RA*cos(DEC), PM_DEC)=(-2.23 +/- 0.14, -1.83 +/- 0.24) mas/yr.
We present the results of differential proper-motion analyses of the Egg Nebula (RAFGL 2688, V1610 Cyg) based on the archived two-epoch optical data taken with the Hubble Space Telescope. First, we determined that the polarization characteristics of the Egg Nebula is influenced by the higher optical depth of the central regions of the nebula (i.e., the dustsphere of about 1000 AU radius), causing the nebula illuminated in two steps -- the direct starlight is first channeled into bipolar cavities and then scattered off to the rest of the nebula. We then measured the amount of motion of local structures and the signature concentric arcs by determining their relative shifts over the 7.25 yr interval. Based on our analysis, which does not rely on the single-scattering assumption, we concluded that the lobes have been excavated by a linear expansion along the bipolar axis for the past 400 yr, while the concentric arcs have been generated continuously and moving out radially at about 10 km/s for the past 5,500 yr, and there appears to be a colatitudinally-increasing trend in the radial expansion velocity field of the concentric arcs. There exist numerical investigations into the mass-loss modulation by the central binary system, which predict such a colatitudinally-increasing expansion velocity field in the spiral-shock trails of the mass-loss ejecta. Therefore, the Egg Nebula may represent a rare edge-on case of the binary-modulated circumstellar environs, corroborating the previous theoretical predictions.
A faint star located 2 arcsec from KIC 8462852 was discovered in Keck 10 m adaptive optics imaging in the $JHK$ near-infrared (NIR) in 2014 by Boyajian et al. (2016). The closeness of the star to KIC 8462852 suggested the two could constitute a binar y, which might have implications for the cause of the brightness dips seen by {it Kepler} (Boyajian et al. (2016) and in ground-based optical studies Boyajian et al. (2018). Here, NIR imaging in 2017 using the Mimir instrument resolved the pair and enabled measuring their separation. The faint star had moved $67 pm 7$ milliarcsec (mas) relative to KIC 8462852 since 2014. The relative proper motion of the faint star is $23.9 pm 2.6$ mas yr$^{-1}$, for a tangential velocity of $45 pm 5$ km s$^{-1}$ if it is at the same 390 pc distance as KIC 8462852. Circular velocity at the 750 AU current projected separation is $1.5$ km s$^{-1}$, hence the star pair cannot be bound.
Massive, evolved stars play a crucial role in the metal-enrichment, dust budget, and energetics of the interstellar medium, however, the details of their evolution are uncertain because of their rarity and short lifetimes before exploding as supernov ae. Discrepancies between theoretical predictions from single-star evolutionary models and observations of massive stars have evoked a shifting paradigm that implicates the importance of binary interaction. We present mid- to far-infrared observations from the Stratospheric Observatory for Infrared Astronomy (SOFIA) of a conical helix of warm dust ($sim180$ K) that appears to extend from the Wolf-Rayet star WR102c. Our interpretation of the helix is a precessing, collimated outflow that emerged from WR102c during a previous evolutionary phase as a rapidly rotating luminous blue variable. We attribute the precession of WR102c to gravitational interactions with an unseen compact binary companion whose orbital period can be constrained to $800,mathrm{d}<P<1400$ d from the inferred precession period, $tau_psim1.4times10^4$ yr, and limits imposed on the stellar and orbital parameters of the system. Our results concur with the range of orbital periods ($Plesssim1500$ d) where spin-up via mass exchange is expected to occur for massive binary systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا