ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum feedback control of a superconducting qubit: Persistent Rabi oscillations

173   0   0.0 ( 0 )
 نشر من قبل Rajamani Vijayaraghavan
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The act of measurement bridges the quantum and classical worlds by projecting a superposition of possible states into a single, albeit probabilistic, outcome. The time-scale of this instantaneous process can be stretched using weak measurements so that it takes the form of a gradual random walk towards a final state. Remarkably, the interim measurement record is sufficient to continuously track and steer the quantum state using feedback. We monitor the dynamics of a resonantly driven quantum two-level system -- a superconducting quantum bit --using a near-noiseless parametric amplifier. The high-fidelity measurement output is used to actively stabilize the phase of Rabi oscillations, enabling them to persist indefinitely. This new functionality shows promise for fighting decoherence and defines a path for continuous quantum error correction.



قيم البحث

اقرأ أيضاً

Under resonant irradiation, a quantum system can undergo coherent (Rabi) oscillations in time. We report evidence for such oscillations in a _continuously_ observed three-Josephson-junction flux qubit, coupled to a high-quality tank circuit tuned to the Rabi frequency. In addition to simplicity, this method of_Rabi spectroscopy_ enabled a long coherence time of about 2.5 microseconds, corresponding to an effective qubit quality factor ~7000.
108 - K. Kakuyanagi , A. Kemp , T. Baba 2015
Quantum feedback is a technique for measuring a qubit and applying appropriate feedback depending on the measurement results. Here, we propose a new on-chip quantum feedback method where the measurement-result information is not taken from the chip t o the outside of a dilution refrigerator. This can be done by using a selective qubit-energy shift induced by measurement apparatus. We demonstrate on-chip quantum feedback and succeed in the rapid initialization of a qubit by flipping the qubit state only when we detect the ground state of the qubit. The feedback loop of our quantum feedback method closed on a chip, and so the operating time needed to control a qubit is of the order of 10 ns. This operating time is shorter than with the convectional off-chip feedback method. Our on-chip quantum feedback technique opens many possibilities such as an application to quantum information processing and providing an understanding of the foundation of thermodynamics for quantum systems.
The problem of Rabi oscillations in a qubit coupled to a fluctuator and in contact with a heath bath is considered. A scheme is developed for taking into account both phase and energy relaxation in a phenomenological way, while taking full account of the quantum dynamics of the four-level system subject to a driving AC field. Significant suppression of the Rabi oscillations is found when the qubit and fluctuator are close to resonance. The effect of the fluctuator state on the read-out signal is discussed. This effect is shown to modify the observed signal significantly. This may be relevant to recent experiments by Simmonds et al. [Phys. Rev. Lett. 93, 077003 (2004)].
In a Rabi oscillation experiment with a superconducting qubit we show that a visibility in the qubit excited state population of more than 90 % can be attained. We perform a dispersive measurement of the qubit state by coupling the qubit non-resonant ly to a transmission line resonator and probing the resonator transmission spectrum. The measurement process is well characterized and quantitatively understood. The qubit coherence time is determined to be larger than 500 ns in a measurement of Ramsey fringes.
We introduce a hybrid qubit based on a semiconductor nanowire with an epitaxially grown superconductor layer. Josephson energy of the transmon-like device (gatemon) is controlled by an electrostatic gate that depletes carriers in a semiconducting wea k link region. Strong coupling to an on-chip microwave cavity and coherent qubit control via gate voltage pulses is demonstrated, yielding reasonably long relaxation times (0.8 {mu}s) and dephasing times (1 {mu}s), exceeding gate operation times by two orders of magnitude, in these first-generation devices. Because qubit control relies on voltages rather than fluxes, dissipation in resistive control lines is reduced, screening reduces crosstalk, and the absence of flux control allows operation in a magnetic field, relevant for topological quantum information.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا