ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified likelihood ratio tests in heteroskedastic multivariate regression models with measurement error

196   0   0.0 ( 0 )
 نشر من قبل Tatiane Melo
 تاريخ النشر 2012
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we develop modifi



قيم البحث

اقرأ أيضاً

Multivariate linear regressions are widely used statistical tools in many applications to model the associations between multiple related responses and a set of predictors. To infer such associations, it is often of interest to test the structure of the regression coefficients matrix, and the likelihood ratio test (LRT) is one of the most popular approaches in practice. Despite its popularity, it is known that the classical $chi^2$ approximations for LRTs often fail in high-dimensional settings, where the dimensions of responses and predictors $(m,p)$ are allowed to grow with the sample size $n$. Though various corrected LRTs and other test statistics have been proposed in the literature, the fundamental question of when the classic LRT starts to fail is less studied, an answer to which would provide insights for practitioners, especially when analyzing data with $m/n$ and $p/n$ small but not negligible. Moreover, the power performance of the LRT in high-dimensional data analysis remains underexplored. To address these issues, the first part of this work gives the asymptotic boundary where the classical LRT fails and develops the corrected limiting distribution of the LRT for a general asymptotic regime. The second part of this work further studies the test power of the LRT in the high-dimensional setting. The result not only advances the current understanding of asymptotic behavior of the LRT under alternative hypothesis, but also motivates the development of a power-enhanced LRT. The third part of this work considers the setting with $p>n$, where the LRT is not well-defined. We propose a two-step testing procedure by first performing dimension reduction and then applying the proposed LRT. Theoretical properties are developed to ensure the validity of the proposed method. Numerical studies are also presented to demonstrate its good performance.
We deal with a general class of extreme-value regression models introduced by Barreto- Souza and Vasconcellos (2011). Our goal is to derive an adjusted likelihood ratio statistic that is approximately distributed as c{hi}2 with a high degree of accur acy. Although the adjusted statistic requires more computational effort than its unadjusted counterpart, it is shown that the adjustment term has a simple compact form that can be easily implemented in standard statistical software. Further, we compare the finite sample performance of the three classical tests (likelihood ratio, Wald, and score), the gradient test that has been recently proposed by Terrell (2002), and the adjusted likelihood ratio test obtained in this paper. Our simulations favor the latter. Applications of our results are presented. Key words: Extreme-value regression; Gradient test; Gumbel distribution; Likelihood ratio test; Nonlinear models; Score test; Small-sample adjustments; Wald test.
We present new results for consistency of maximum likelihood estimators with a focus on multivariate mixed models. Our theory builds on the idea of using subsets of the full data to establish consistency of estimators based on the full data. It requi res neither that the data consist of independent observations, nor that the observations can be modeled as a stationary stochastic process. Compared to existing asymptotic theory using the idea of subsets we substantially weaken the assumptions, bringing them closer to what suffices in classical settings. We apply our theory in two multivariate mixed models for which it was unknown whether maximum likelihood estimators are consistent. The models we consider have non-stochastic predictors and multivariate responses which are possibly mixed-type (some discrete and some continuous).
There exist a number of tests for assessing the nonparametric heteroscedastic location-scale assumption. Here we consider a goodness-of-fit test for the more general hypothesis of the validity of this model under a parametric functional transformatio n on the response variable. Specifically we consider testing for independence between the regressors and the errors in a model where the transformed response is just a location/scale shift of the error. Our criteria use the familiar factorization property of the joint characteristic function of the covariates under independence. The difficulty is that the errors are unobserved and hence one needs to employ properly estimated residuals in their place. We study the limit distribution of the test statistics under the null hypothesis as well as under alternatives, and also suggest a resampling procedure in order to approximate the critical values of the tests. This resampling is subsequently employed in a series of Monte Carlo experiments that illustrate the finite-sample properties of the new test. We also investigate the performance of related test statistics for normality and symmetry of errors, and apply our methods on real data sets.
Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] considered the estimation of the risk function $psi (x)$ in the proportional hazards model. Their proposed estimator is based on integrating the estimated derivative function obtained through a local version of the partial likelihood. They proved the large sample properties of the derivative function, but the large sample properties of the estimator for the risk function itself were not established. In this paper, we consider direct estimation of the relative risk function $psi (x_2)-psi (x_1)$ for any location normalization point $x_1$. The main novelty in our approach is that we select observations in shrinking neighborhoods of both $x_1$ and $x_2$ when constructing a local version of the partial likelihood, whereas Fan, Gijbels and King [Ann. Statist. 25 (1997) 1661--1690] only concentrated on a single neighborhood, resulting in the cancellation of the risk function in the local likelihood function. The asymptotic properties of our estimator are rigorously established and the variance of the estimator is easily estimated. The idea behind our approach is extended to estimate the differences between groups. A simulation study is carried out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا