ﻻ يوجد ملخص باللغة العربية
The prospect of new biological and industrial applications that require communication in micro-scale, encourages research on the design of bio-compatible communication networks using networking primitives already available in nature. One of the most promising candidates for constructing such networks is to adapt and engineer specific types of bacteria that are capable of sensing, actuation, and above all, communication with each other. In this paper, we describe a new architecture for networks of bacteria to form a data collecting network, as in traditional sensor networks. The key to this architecture is the fact that the node in the network itself is a bacterial colony; as an individual bacterium (biological agent) is a tiny unreliable element with limited capabilities. We describe such a network under two different scenarios. We study the data gathering (sensing and multihop communication) scenario as in sensor networks followed by the consensus problem in a multi-node network. We will explain as to how the bacteria in the colony collectively orchestrate their actions as a node to perform sensing and relaying tasks that would not be possible (at least reliably) by an individual bacterium. Each single bacterium in the colony forms a belief by sensing external parameter (e.g., a molecular signal from another node) from the medium and shares its belief with other bacteria in the colony. Then, after some interactions, all the bacteria in the colony form a common belief and act as a single node. We will model the reception process of each individual bacteria and will study its impact on the overall functionality of a node. We will present results on the reliability of the multihop communication for data gathering scenario as well as the speed of convergence in the consensus scenario.
Molecular communication is an expanding body of research. Recent advances in biology have encouraged using genetically engineered bacteria as the main component in the molecular communication. This has stimulated a new line of research that attempts
The design of biological networks using bacteria as the basic elements of the network is initially motivated by a phenomenon called quorum sensing. Through quorum sensing, each bacterium performs sensing the medium and communicating it to others via
We characterize cell motion in experiments and show that the transition to collective motion in colonies of gliding bacterial cells confined to a monolayer appears through the organization of cells into larger moving clusters. Collective motion by no
The design of biologically-inspired wireless communication systems using bacteria as the basic element of the system is initially motivated by a phenomenon called emph{Quorum Sensing}. Due to high randomness in the individual behavior of a bacterium,
Relay networks having $n$ source-to-destination pairs and $m$ half-duplex relays, all operating in the same frequency band in the presence of block fading, are analyzed. This setup has attracted significant attention and several relaying protocols ha