ترغب بنشر مسار تعليمي؟ اضغط هنا

Space-quality data from balloon-borne telescopes: the High Altitude Lensing Observatory (HALO)

230   0   0.0 ( 0 )
 نشر من قبل Jason Dennis Rhodes
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a method for attaining sub-arcsecond pointing stability during sub- orbital balloon flights, as designed for in the High Altitude Lensing Observatory (HALO) concept. The pointing method presented here has the potential to perform near-space quality optical astronomical imaging at 1-2% of the cost of space-based missions. We also discuss an architecture that can achieve sufficient thermomechanical stability to match the pointing stability. This concept is motivated by advances in the development and testing of Ultra Long Duration Balloon (ULDB) flights which promise to allow observation campaigns lasting more than three months. The design incorporates a multi-stage pointing architecture comprising: a gondola coarse azimuth control system, a multi-axis nested gimbal frame structure with arcsecond stability, a telescope de-rotator to eliminate field rotation, and a fine guidance stage consisting of both a telescope mounted angular rate sensor and guide CCDs in the focal plane to drive a fast-steering mirror. We discuss the results of pointing tests together with a preliminary thermo-mechanical analysis required for sub-arcsecond pointing at high altitude. Possible future applications in the areas of wide-field surveys and exoplanet searches are also discussed.



قيم البحث

اقرأ أيضاً

We present the results of a study along with a first prototype of a high precision system (? 1 arcsec) for pointing and tracking light (near-infrared) telescopes on board stratospheric balloons. Such a system is essentially composed by a star sensor and by a star tracker, able to recognize the field and to adequately track the telescope, respectively. We present the software aimed at processing the star sensor image and the predictive algorithm that allows the fine tracking of the source at a sub-pixel level. The laboratory tests of the system are described and its performance is analyzed. We demonstrate how such a device, when used at the focal plane of enough large telescopes (2-4m, F/10), is capable to provide (sub-)arcsec diffraction limited images in the near infrared bands.
The BLAST Observatory is a proposed superpressure balloon-borne polarimeter designed for a future ultra-long duration balloon campaign from Wanaka, New Zealand. To maximize scientific output while staying within the stringent superpressure weight env elope, BLAST will feature new 1.8m off-axis optical system contained within a lightweight monocoque structure gondola. The payload will incorporate a 300L $^4$He cryogenic receiver which will cool 8,274 microwave kinetic inductance detectors (MKIDs) to 100mK through the use of an adiabatic demagnetization refrigerator (ADR) in combination with a $^3$He sorption refrigerator all backed by a liquid helium pumped pot operating at 2K. The detector readout utilizes a new Xilinx RFSOC-based system which will run the next-generation of the BLAST-TNG KIDPy software. With this instrument we aim to answer outstanding questions about dust dynamics as well as provide community access to the polarized submillimeter sky made possible by high-altitude observing unrestricted by atmospheric transmission. The BLAST Observatory is designed for a minimum 31-day flight of which 70$%$ will be dedicated to observations for BLAST scientific goals and the remaining 30$%$ will be open to proposals from the wider astronomical community through a shared-risk proposals program.
Although there exists a large sample of known exoplanets, little spectroscopic data exists that can be used to study their global atmospheric properties. This deficiency can be addressed by performing phase-resolved spectroscopy -- continuous spectro scopic observations of a planets entire orbit about its host star -- of transiting exoplanets. Planets with characteristics suitable for atmospheric characterization have orbits of several days, thus phase curve observations are highly resource intensive, especially for shared use facilities. In this work, we show that an infrared spectrograph operating from a high altitude balloon platform can perform phase-resolved spectroscopy of hot Jupiter-type exoplanets with performance comparable to a space-based telescope. Using the EXoplanet Climate Infrared TElescope (EXCITE) experiment as an example, we quantify the impact of the most important systematic effects that we expect to encounter from a balloon platform. We show an instrument like EXCITE will have the stability and sensitivity to significantly advance our understanding of exoplanet atmospheres. Such an instrument will both complement and serve as a critical bridge between current and future space-based near infrared spectroscopic instruments.
124 - Ph. von Doetinchem 2009
This thesis discusses two different approaches for the measurement of cosmic-ray antiparticles in the GeV to TeV energy range. The first part of this thesis discusses the prospects of antiparticle flux measurements with the proposed PEBS detector. The project allots long duration balloon flights at one of Earths poles at an altitude of 40 km. GEANT4 simulations were carried out which determine the atmospheric background and attenuation especially for antiparticles. The second part covers the AMS-02 experiment which will be installed in 2010 on the International Space Station at an altitude of about 400 km for about three years to measure cosmic rays without the influence of Earths atmosphere. The present work focuses on the anticoincidence counter system (ACC). The ACC is needed to reduce the trigger rate during periods of high fluxes and to reject external particles crossing the tracker from the side or particles resulting from interactions within the detector which would otherwise disturb the clean charge and momentum measurements. The last point is especially important for the measurement of antinuclei and antiparticles.
82 - A. Kogut , S. Denker , N. Bellis 2021
The Balloon-Borne Cryogenic Telescope Testbed (BOBCAT) is a stratospheric balloon payload to develop technology for a future cryogenic suborbital observatory. A series of flights are intended to establish ultra-light dewar performance and open-apertu re observing techniques for large (3--5 meter diameter) cryogenic telescopes at infrared wavelengths. An initial flight in 2019 demonstrated bulk transfer of liquid nitrogen and liquid helium at stratospheric altitudes. An 827 kg payload carried 14 liters of liquid nitrogen (LN2) and 268 liters of liquid helium (LHe) in pressurized storage dewars to an altitude of 39.7 km. Once at float altitude, liquid nitrogen transfer cooled a separate, unpressurized bucket dewar to a temperature of 65 K, followed by the transfer of 32 liters of liquid helium from the storage dewar into the bucket dewar. Calorimetric tests measured the total heat leak to the LHe bath within bucket dewar. A subsequent flight will replace the receiving bucket dewar with an ultra-light dewar of similar size to compare the performance of the ultra-light design to conventional superinsulated dewars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا