ﻻ يوجد ملخص باللغة العربية
TeV scale new Physics, e.g., Large Extra Dimensions or Models with anomalous triple vector boson couplings, can lead to excesses in various kinematic regions on the semi-leptonic productions of pp -> WW -> lvjj at the CERN LHC, which, although suffers from large QCD background compared with the pure leptonic channel, can benefit from larger production rates and the reconstructable 4-body mass Mlvjj. We study the search sensitivity through the lvjj channel at the 7TeV LHC on relevant new physics, via probing the hard tails on the reconstructed Mlvjj and the transverse momentum of W-boson (PTW), taking into account main backgrounds and including the parton shower and detector simulation effects. Our results show that with integrated luminosity of 5fb-1, the LHC can already discovery or exclude a large parameter region of the new physics, e.g., 95% CL. limit can be set on the Large Extra Dimensions with a cut-off scale up to 1.5 TeV, and the WWZ anomalous coupling down to, e.g. |lambda_Z|~0.1. Brief results are also given for the 8TeV LHC.
Triple gauge boson associated production at the LHC serves as an interesting channel to test the robustness of the Standard Model. Any deviation from its SM prediction may indicate possible existence of relevant new physics, e.g., anomalous quartic g
This report was prepared in the context of the LPCC Electroweak Precision Measurements at the LHC WG and summarizes the activity of a subgroup dedicated to the systematic comparison of public Monte Carlo codes, which describe the Drell-Yan processes
One of the first channels to be experimentally analyzed at the LHC is $ p + p longrightarrow l^+ + l ^- + X $. A resonance in this channel would be a clear indication of a new gauge neutral boson, as proposed in many extended models. In this paper we
Precision studies of the production of a high-transverse momentum lepton in association with missing energy at hadron colliders require that electroweak and QCD higher-order contributions are simultaneously taken into account in theoretical predictio
An $H^pm W^mp Z$ interaction at the tree level is common feature of new physics models that feature scalar triplets. In this study, we aim to probe the strength of the aforementioned interaction in a model-agnostic fashion at the futuristic 27 TeV pr