ﻻ يوجد ملخص باللغة العربية
We consider continuous--time Markov kinetics with a finite number of states and a given positive equilibrium distribution P*. For an arbitrary probability distribution $P$ we study the possible right hand sides, dP/dt, of the Kolmogorov (master) equations. We describe the cone of possible values of the velocity, dP/dt, as a function of P and P*. We prove that, surprisingly, these cones coincide for the class of all Markov processes with equilibrium P* and for the reversible Markov processes with detailed balance at this equilibrium. Therefore, for an arbitrary probability distribution $P$ and a general system there exists a system with detailed balance and the same equilibrium that has the same velocity dP/dt at point P. The set of Lyapunov functions for the reversible Markov processes coincides with the set of Lyapunov functions for general Markov kinetics. The results are extended to nonlinear systems with the generalized mass action law.
Markov state models (MSMs) have been successful in computing metastable states, slow relaxation timescales and associated structural changes, and stationary or kinetic experimental observables of complex molecules from large amounts of molecular dyna
We report a theoretical study of stochastic processes modeling the growth of first-order Markov copolymers, as well as the reversed reaction of depolymerization. These processes are ruled by kinetic equations describing both the attachment and detach
Structural transformations in molecules and solids have generally been studied in isolation, while intermediate systems have eluded characterization. We show that a pair of CdS cluster isomers provides an advantageous experimental platform to study i
The efficient calculation of rare-event kinetics in complex dynamical systems, such as the rate and pathways of ligand dissociation from a protein, is a generally unsolved problem. Markov state models can systematically integrate ensembles of short s
Assessing the magnitude of cause-and-effect relations is one of the central challenges found throughout the empirical sciences. The problem of identification of causal effects is concerned with determining whether a causal effect can be computed from