ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the in-plane orientation of the ground-state orbital of CeCu2Si2

147   0   0.0 ( 0 )
 نشر من قبل Thomas Willers
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have successfully determined the hitherto unknown sign of the B44 Stevens crystal-field parameter of the tetragonal heavy-fermion compound CeCu2Si2 using vector q dependent non-resonant inelastic x-ray scattering (NIXS) experiments at the cerium N4,5 edge. The observed difference between the two different directions q||[100] and q||[110] is due to the anisotropy of the crystal-field ground state in the (001) plane and is observable only because of the utilization of higher than dipole transitions possible in NIXS. This approach allows us to go beyond the specific limitations of dc magnetic susceptibility, inelastic neutron scattering, and soft x-ray spectroscopy, and provides us with a reliable information about the orbital state of the 4f electrons relevant for the quantitative modeling of the quasi-particles and their interactions in heavy-fermion systems.



قيم البحث

اقرأ أيضاً

We present core level non-resonant inelastic x-ray scattering (NIXS) data of the heavy fermion compounds CeCoIn$_5$ and CeRhIn$_5$ measured at the Ce $N_{4,5}$-edges. The higher than dipole transitions in NIXS allow determining the orientation of the $Gamma_7$ crystal-field ground-state orbital within the unit cell. The crystal-field parameters of the Ce$M$In$_5$ compounds and related substitution phase diagrams have been investigated in great detail in the past; however, whether the ground-state wavefunction is the $Gamma_7^+$ ($x^2,-,y^2$) or $Gamma_7^-$ ($xy$ orientation) remained undetermined. We show that the $Gamma_7^-$ doublet with lobes along the (110) direction forms the ground state in CeCoIn$_5$ and CeRhIn$_5$. For CeCoIn$_5$, however, we find also some contribution of the first excited state crystal-field state in the ground state due to the stronger hybridization of 4$f$ and conduction electrons, suggesting a smaller $alpha^2$ value than originally anticipated from x-ray absorption. A comparison is made to the results of existing density functional theory plus dynamical mean-field theory calculations.
Pyrochlore systems are ideally suited to the exploration of geometrical frustration in three dimensions, and their rich phenomenology encompasses topological order and fractional excitations. Classical spin ices provide the first context in which it is possible to control emergent magnetic monopoles, and anisotropic exchange leads to even richer behaviour associated with large quantum fluctuations. Whether the magnetic ground state of Yb2Ti2O7 is a quantum spin liquid or a ferromagnetic phase induced by a Higgs transition appears to be sample dependent. Here we have determined the role of structural defects on the magnetic ground state via the diffuse scattering of neutrons. We find that oxygen vacancies stabilise the spin liquid phase and the stuffing of Ti sites by Yb suppresses it. Samples in which the oxygen vacancies have been eliminated by annealing in oxygen exhibit a transition to a ferromagnetic phase, and this is the true magnetic ground state.
Motivated by the absence of both spin freezing and a cooperative Jahn-Teller effect at the lowest measured temperatures, we study the ground state of Ba3CuSb2O9. We solve a general spin-orbital model on both the honeycomb and the decorated honeycomb lattice, revealing rich phase diagrams. The spin-orbital model on the honeycomb lattice contains an SU(4) point, where previous studies have shown the existence of a spin-orbital liquid with algebraically decaying correlations. For realistic parameters on the decorated honeycomb lattice, we find a phase that consists of clusters of nearest-neighbour spin singlets, which can be understood in terms of dimer coverings of an emergent square lattice. While the experimental situation is complicated by structural disorder, we show qualitative agreement between our theory and a range of experiments.
Ground state properties of multi-orbital Hubbard models are investigated by the auxiliary field quantum Monte Carlo method. A Monte Carlo technique generalized to the multi-orbital systems is introduced and examined in detail. The algorithm contains non-trivial cases where the negative sign problem does not exist. We investigate one-dimensional systems with doubly degenerate orbitals by this new technique. Properties of the Mott insulating state are quantitatively clarified as the strongly correlated insulator, where the charge gap amplitude is much larger than the spin gap. The insulator-metal transitions driven by the chemical potential shows a universality class with the correlation length exponent $ u=1/2$, which is consistent with the scaling arguments. Increasing level split between two orbitals drives crossover from the Mott insulator with high spin state to the band insulator with low spin state, where the spin gap amplitude increases and becomes closer to the charge gap. Experimental relevance of our results especially to Haldane materials is discussed.
We show that the heavy-fermion compound CeCu2Si2 undergoes a transition between two regimes dominated by different crystal-field states. At low pressure P and low temperature T the Ce 4f electron resides in the atomic crystal-field ground state, whil e at high P or T the electron occupancy and spectral weight is transferred to an excited crystal-field level that hybridizes more strongly with itinerant states. These findings result from first-principles dynamical-mean-field-theory calculations. We predict experimental signatures of this orbital transition in X-ray spectroscopy. The corresponding fluctuations may be responsible for the second high-pressure superconducting dome observed in this and similar materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا