ﻻ يوجد ملخص باللغة العربية
To implement reliable quantum information processing, quantum gates have to be protected together with the qubits from decoherence. Here we demonstrate experimentally on nitrogen-vacancy system that by using continuous wave dynamical decoupling method, not only the coherence time is prolonged by about 20 times, but also the quantum gates is protected for the duration of controlling time. This protocol shares the merits of retaining the superiority of prolonging the coherence time and at the same time easily combining with quantum logic tasks. It is expected to be useful in task where duration of quantum controlling exceeds far beyond the dephasing time.
Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling (DD) attenuates the destructive effect of the environmental noise, but so far it has been us
The main obstacles to the realization of high-fidelity quantum gates are the control errors arising from inaccurate manipulation of a quantum system and the decoherence caused by the interaction between the quantum system and its environment. Nonadia
The loss of coherence is one of the main obstacles for the implementation of quantum information processing. The efficiency of dynamical decoupling schemes, which have been introduced to address this problem, is limited itself by the fluctuations in
We experimentally demonstrate over two orders of magnitude increase in the coherence time of nitrogen vacancy centres in diamond by implementing decoupling techniques. We show that equal pulse spacing decoupling performs just as well as non-periodic
Dephasing -- phase randomization of a quantum superposition state -- is a major obstacle for the realization of high fidelity quantum logic operations. Here, we implement a two-qubit Controlled-NOT gate using dynamical decoupling (DD), despite the ga