ترغب بنشر مسار تعليمي؟ اضغط هنا

The Properties and Prevalence of Galactic Outflows at z = 1 in the Extended Groth Strip

135   0   0.0 ( 0 )
 نشر من قبل Katherine Kornei
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate galactic-scale outflowing winds in 72 star-forming galaxies at z~1 in the Extended Groth Strip. Galaxies were selected from the DEEP2 survey and follow-up LRIS spectroscopy was obtained covering SiII, CIV, FeII, MgII, and MgI lines in the rest-frame ultraviolet. Using GALEX, HST, and Spitzer imaging, we examine galaxies on a per-object basis in order to understand both the prevalence of galactic winds at z~1 and the star-forming and structural properties of objects experiencing outflows. Gas velocities, measured from the centroids of FeII interstellar absorption lines, span the interval [-217, +155] km/s. We find that ~40% (10%) of the sample exhibits blueshifted FeII lines at the 1-sigma (3-sigma) level. We also measure maximal outflow velocities using the profiles of the FeII and MgII lines, and show that MgII frequently traces higher velocity gas than FeII. Quantitative morphological parameters derived from the HST imaging suggest that mergers are not a prerequisite for driving outflows. More face-on galaxies also show stronger winds than highly-inclined systems, consistent with the canonical picture of winds emanating perpendicular to galactic disks. Using star-formation rates calculated from GALEX data, and areas estimated from HST imaging, we detect a ~3-sigma correlation between outflow velocity and star-formation rate surface density, but only a weak (~1-sigma) trend between outflow velocity and star-formation rate. Higher resolution data are needed in order to test the scaling relations between outflow velocity and both star-formation rate and star-formation rate surface density predicted by theory.



قيم البحث

اقرأ أيضاً

128 - Ying-He Zhao 2009
We present $ugR$ optical images taken with the MMT/Megacam and the Subaru/Suprime of the Extended Groth Strip survey. The total survey covers an area of about $sim 1$ degree$^2$, including four sub-fields and is optimized for the study of galaxies at $zsim3$. Our methods for photometric calibration in AB magnitudes, the limiting magnitude and the galaxy number count are described. A sample of 1642 photometrically selected candidate LBGs to an apparent $R_{AB}$ magnitude limit of 25.0 is present. The average sky surface density of our LBGs sample is $sim$ 1.0 arcmin$^{-2}$, slightly higher than the previous finding.
We present the quantitative rest-frame B morphological evolution and galaxy merger fractions at 0.2 < z < 1.2 as observed by the All-wavelength Extended Groth Strip International Survey (AEGIS). We use the Gini coefficent and M_20 to identify major m ergers and classify galaxy morphology for a volume-limited sample of 3009 galaxies brighter than 0.4 L_B^*, assuming pure luminosity evolution of 1.3 M_B per unit redshift. We find that the merger fraction remains roughly constant at 10 +/- 2% for 0.2 < z < 1.2. The fraction of E/S0/Sa increases from 21+/- 3% at z ~ 1.1 to 44 +/- 9% at z ~ 0.3, while the fraction of Sb-Ir decreases from 64 +/- 6% at z ~ 1.1 to 47 +/- 9% at z ~ 0.3. The majority of z < 1.2 Spitzer MIPS 24 micron sources with L(IR) > 10^11 L_sun are disk galaxies, and only ~ 15% are classified as major merger candidates. Edge-on and dusty disk galaxies (Sb-Ir) are almost a third of the red sequence at z ~ 1.1, while E/S0/Sa makeup over 90% of the red sequence at z ~ 0.3. Approximately 2% of our full sample are red mergers. We conclude (1) the galaxy merger rate does not evolve strongly between 0.2 < z < 1.2; (2) the decrease in the volume-averaged star-formation rate density since z ~ 1 is a result of declining star-formation in disk galaxies rather than a disappearing population of major mergers; (3) the build-up of the red sequence at z < 1 can be explained by a doubling in the number of spheroidal galaxies since z ~ 1.2.
We present an analysis of cool outflowing gas around galaxies, traced by MgII absorption lines in the co-added spectra of a sample of 486 zCOSMOS galaxies at 1 < z < 1.5. These galaxies span a range of stellar masses (9.45< log[M*/Msun]<10.7) and sta r formation rates (0.14 < log [SFR/Msun/yr] < 2.35). We identify the cool outflowing component in the MgII absorption and find that the equivalent width of the outflowing component increases with stellar mass. The outflow equivalent width also increases steadily with the increasing star formation rate of the galaxies. At similar stellar masses the blue galaxies exhibit a significantly higher outflow equivalent width as compared to red galaxies. The outflow equivalent width shows strong effect with star formation surface density ({Sigma}SFR) of the sample. For the disk galaxies, the outflow equivalent width is higher for the face-on systems as compared to the edge-on ones, indicating that for the disk galaxies, the outflowing gas is primarily bipolar in geometry. Galaxies typically exhibit outflow velocities ranging from -200 km/s to -300 km/s and on average the face-on galaxies exhibit higher outflow velocity as compared to the edge-on ones. Galaxies with irregular morphologies exhibit outflow equivalent width as well as outflow velocities comparable to face on disk galaxies. These galaxies exhibit minimum mass outflow rates > 5-7 Msun/yr and a mass loading factor ({eta} = dMout/dt /SFR) comparable to the star formation rates of the galaxies.
Using data from the All Wavelength Extended Groth Strip International Survey (AEGIS) we statistically detect the extended X-ray emission in the interstellar medium (ISM)/intra-cluster medium (ICM) in both active and normal galaxies at 0.3 <= z <= 1.3 . For both active galactic nuclei (AGN) host galaxy and normal galaxy samples that are matched in restframe color, luminosity, and redshift distribution, we tentatively detect excess X-ray emission at scales of 1--10 arcsec at a few sigma significance in the surface brightness profiles. The exact significance of this detection is sensitive to the true characterization of Chandras point spread function. The observed excess in the surface brightness profiles is suggestive of lower extended emission in AGN hosts compared to normal galaxies. This is qualitatively similar to theoretical predictions of the X-ray surface brightness profile from AGN feedback models, where feedback from AGN is likely to evacuate the gas from the center of the galaxy/cluster. We propose that AGN that are intrinsically under-luminous in X-rays, but have equivalent bolometric luminosities to our sources will be the ideal sample to study more robustly the effect of AGN feedback on diffuse ISM/ICM gas.
We use the optical--infrared imaging in the UKIDSS Ultra Deep Survey field, in combination with the new deep radio map of Arumugam et al., to calculate the distribution of radio luminosities among galaxies as a function of stellar mass in two redshif t bins across the interval 0.4<z<1.2. This is done with the use of a new Bayesian method to classify stars and galaxies in surveys with multi-band photometry, and to derive photometric redshifts and stellar masses for those galaxies. We compare the distribution to that observed locally and find agreement if we consider only objects believed to be weak-lined radio-loud galaxies. Since the local distribution is believed to be the result of an energy balance between radiative cooling of the gaseous halo and mechanical AGN heating, we infer that this balance was also present as long ago as z~1. This supports the existence of a direct link between the presence of a low-luminosity (hot-mode) radio-loud active galactic nucleus and the absence of ongoing star formation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا