ﻻ يوجد ملخص باللغة العربية
For the family of graded lattice ideals of dimension 1, we establish a complete intersection criterion in algebraic and geometric terms. In positive characteristic, it is shown that all ideals of this family are binomial set theoretic complete intersections. In characteristic zero, we show that an arbitrary lattice ideal which is a binomial set theoretic complete intersection is a complete intersection.
The second Veronese ideal $I_n$ contains a natural complete intersection $J_n$ generated by the principal $2$-minors of a symmetric $(ntimes n)$-matrix. We determine subintersections of the primary decomposition of $J_n$ where one intersectand is omi
In this paper we completely characterize lattice ideals that are complete intersections or equivalently complete intersections finitely generated semigroups of $bz^noplus T$ with no invertible elements, where $T$ is a finite abelian group. We also ch
Let $G$ be a simple graph on $n$ vertices and $J_G$ denote the binomial edge ideal of $G$ in the polynomial ring $S = mathbb{K}[x_1, ldots, x_n, y_1, ldots, y_n].$ In this article, we compute the second graded Betti numbers of $J_G$, and we obtain a
We give an explicit formula for the Hilbert-Poincar{e} series of the parity binomial edge ideal of a complete graph $K_{n}$ or equivalently for the ideal generated by all $2times 2$-permanents of a $2times n$-matrix. It follows that the depth and Cas
In this paper, we investigate the behavior of almost reverse lexicographic ideals with the Hilbert function of a complete intersection. More precisely, over a field $K$, we give a new constructive proof of the existence of the almost revlex ideal $Js