ﻻ يوجد ملخص باللغة العربية
The closest examples of high-mass star birth occurs in deeply embedded environments at kiloparsec distances. Although much progress has been made, an observationally validated picture of the dominant processes which allows the central hydrostatic object to grow in mass has yet to be established. The observational technique of optical interferometry has demonstrated its potential in the field of high-mass star formation by delivering a milli-arcsecond infrared view on the complex accretion environment. We provide an overview of the scientific results obtained with multi-aperture telescope arrays and briefly discuss future instruments and their anticipated impact on our understanding of massive young stellar objects.
Due to the recent dramatic technological advances, infrared interferometry can now be applied to new classes of objects, resulting in exciting new science prospects, for instance, in the area of high-mass star formation. Although extensively studied
The aim of this work is to improve the SBC relation for early-type stars in the $-1 leq V-K leq 0$ color domain, using optical interferometry. Observations of eight B- and A-type stars were secured with the VEGA/CHARA instrument in the visible. The d
Asteroseismology is a powerful tool for probing the internal structures of stars by using their natural pulsation frequencies. It relies on identifying sequences of pulsation modes that can be compared with theoretical models, which has been done suc
High mass X-ray binaries are among the brightest X-ray sources in the Milky Way, as well as in nearby Galaxies. Thanks to their highly variable emissions and complex phenomenology, they have attracted the interest of the high energy astrophysical com
Stellar rotation is a crucial parameter driving stellar magnetism, activity and mixing of chemical elements. Furthermore, the evolution of stellar rotation is coupled to the evolution of circumstellar disks. Disk-braking mechanisms are believed to be