ترغب بنشر مسار تعليمي؟ اضغط هنا

Locally convex hypersurfaces immersed in $H^n times R$

251   0   0.0 ( 0 )
 نشر من قبل Paul Schweitzer SJ
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove a theorem of Hadamard-Stoker type: a connected locally convex complete hypersurface immersed in $H^n times R$ (n>1), where $H^n$ is n-dimensional hyperbolic space, is embedded and homeomorphic either to the n-sphere or to $R^n$. In the latter case it is either a vertical graph over a convex domain in $H^n$ or has what we call a simple end.



قيم البحث

اقرأ أيضاً

A diagonal metric sum_{i=1}^n g_{ii} dx_i^2 is termed Guichard_k if sum_{i=1}^{n-k}g_{ii}-sum_{i=n-k+1}^n g_{ii}=0. A hypersurface in R^{n+1} is isothermic_k if it admits line of curvature co-ordinates such that its induced metric is Guichard_k. Isot hermic_1 surfaces in R^3 are the classical isothermic surfaces in R^3. Both isothermic_k hypersurfaces in R^{n+1} and Guichard_k orthogonal co-ordinate systems on R^n are invariant under conformal transformations. A sequence of n isothermic_k hypersurfaces in R^{n+1} (Guichard_k orthogonal co-ordinate systems on R^n resp.) is called a Combescure sequence if the consecutive hypersurfaces (orthogonal co-ordinate systems resp.) are related by Combescure transformations. We give a correspondence between Combescure sequences of Guichard_k orthogonal co-ordinate systems on R^n and solutions of the O(2n-k,k)/O(n)xO(n-k,k)-system, and a correspondence between Combescure sequences of isothermic_k hypersurfaces in R^{n+1} and solutions of the O(2n+1-k,k)/O(n+1)xO(n-k,k)-system, both being integrable systems. Methods from soliton theory can therefore be used to construct Christoffel, Ribaucour, and Lie transforms, and to describe the moduli spaces of these geometric objects and their loop group symmetries.
We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N times mathbb{R}$, where $N$ is an $n$-dimensional complete Riemannian manifold with radial sectional curvature $K_{N} leq kappa$. Wh en the immersion is minimal our estimates are sharp. We also show that cylindrically bounded minimal surfaces has positive fundamental tone.
Given a hypersurface $M$ of null scalar curvature in the unit sphere $mathbb{S}^n$, $nge 4$, such that its second fundamental form has rank greater than 2, we construct a singular scalar-flat hypersurface in $Rr^{n+1}$ as a normal graph over a trunca ted cone generated by $M$. Furthermore, this graph is 1-stable if the cone is strictly 1-stable.
In [2], the authors develop a global correspondence between immersed weakly horospherically convex hypersurfaces $phi:M^n to mathbb{H}^{n+1}$ and a class of conformal metrics on domains of the round sphere $mathbb{S}^n$. Some of the key aspects of th e correspondence and its consequences have dimensional restrictions $ngeq3$ due to the reliance on an analytic proposition from [5] concerning the asymptotic behavior of conformal factors of conformal metrics on domains of $mathbb{S}^n$. In this paper, we prove a new lemma about the asymptotic behavior of a functional combining the gradient of the conformal factor and itself, which allows us to extend the global correspondence and embeddedness theorems of [2] to all dimensions $ngeq2$ in a unified way. In the case of a single point boundary $partial_{infty}phi(M)={x} subset mathbb{S}^n$, we improve these results in one direction. As an immediate consequence of this improvement and the work on elliptic problems in [2], we have a new, stronger Bernstein type theorem. Moreover, we are able to extend the Liouville and Delaunay type theorems from [2] to the case of surfaces in $mathbb{H}^{3}$.
It is known that for $Omega subset mathbb{R}^{2}$ an unbounded convex domain and $H>0$, there exists a graph $Gsubset mathbb{R}^{3}$ of constant mean curvature $H$ over $Omega $ with $partial G=$ $partial Omega $ if and only if $Omega $ is included i n a strip of width $1/H$. In this paper we obtain results in $mathbb{H}^{2}times mathbb{R}$ in the same direction: given $Hin left( 0,1/2right) $, if $Omega $ is included in a region of $mathbb{ H}^{2}times left{ 0right} $ bounded by two equidistant hypercycles $ell(H)$ apart, we show that, if the geodesic curvature of $partial Omega $ is bounded from below by $-1,$ then there is an $H$-graph $G$ over $Omega $ with $partial G=partial Omega$. We also present more refined existence results involving the curvature of $partialOmega,$ which can also be less than $-1.$
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا