ترغب بنشر مسار تعليمي؟ اضغط هنا

The SDSS-HET Survey of Kepler Eclipsing Binaries: Spectroscopic Dynamical Masses of the Kepler-16 Circumbinary Planet Hosts

157   0   0.0 ( 0 )
 نشر من قبل Chad Bender
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have used high-resolution spectroscopy to observe the Kepler-16 eclipsing binary as a double-lined system, and measure precise radial velocities for both stellar components. These velocities yield a dynamical mass-ratio of q=0.2994+-0.0031. When combined with the inclination, i=90.3401+0.0016-0.0019 deg, measured from the Kepler photometric data by Doyle et al. 2011, we derive dynamical masses for the Kepler-16 components of M_A=0.654+-0.017 M_sun and M_B=0.1959+-0.0031 M_sun, a precision of 2.5% and 1.5% respectively. Our results confirm at the ~2% level the mass-ratio derived by Doyle et al. with their photometric-dynamical model, q=0.2937+-0.0006. These are among the most precise spectroscopic dynamical masses ever measured for low-mass stars, and provide an important direct test of the results from the photometric-dynamical modeling technique.



قيم البحث

اقرأ أيضاً

We report the discovery of a Neptune-size (R_p = 3.87 +/- 0.06 R_Earth) transiting circumbinary planet, Kepler-1661 b, found in the Kepler photometry. The planet has a period of ~175 days and its orbit precesses with a period of only 35 years. The pr ecession causes the alignment of the orbital planes to vary, and the planet is in a transiting configuration only ~7% of the time as seen from Earth. As with several other Kepler circumbinary planets, Kepler-1661 b orbits close to the stability radius, and is near the (hot) edge of habitable zone. The planet orbits a single-lined, grazing eclipsing binary, containing a 0.84 M_Sun and 0.26 M_Sun pair of stars in a mildly eccentric (e=0.11), 28.2-day orbit. The system is fairly young, with an estimated age of ~1-3 Gyrs, and exhibits significant starspot modulations. The grazing-eclipse configuration means the system is very sensitive to changes in the binary inclination, which manifests itself as a change in the eclipse depth. The starspots contaminate the eclipse photometry, but not in the usual way of inducing spurious eclipse timing variations. Rather, the starspots alter the normalization of the light curve, and hence the eclipse depths. This can lead to spurious eclipse depth variations, which are then incorrectly ascribed to binary orbital precession.
We discuss the discovery and characterization of the circumbinary planet Kepler-38b. The stellar binary is single-lined, with a period of 18.8 days, and consists of a moderately evolved main-sequence star (M_A = 0.949 +/- 0.059 solar masses and R_A = 1.757 +/- 0.034 solar radii) paired with a low-mass star (M_B = 0.249 +/- 0.010 solar masses and R_B = 0.2724 +/- 0.0053 solar radii) in a mildly eccentric (e=0.103) orbit. A total of eight transits due to a circumbinary planet crossing the primary star were identified in the Kepler light curve (using Kepler Quarters 1 through 11), from which a planetary period of 105.595 +/- 0.053 days can be established. A photometric dynamical model fit to the radial velocity curve and Kepler light curve yields a planetary radius of 4.35 +/- 0.11 Earth radii, or 1.12 +/- 0.03 Neptune radii. Since the planet is not sufficiently massive to observably alter the orbit of the binary from Keplerian motion, we can only place an upper limit on the mass of the planet of 122 Earth masses (7.11 Neptune masses or 0.384 Jupiter masses) at 95% confidence. This upper limit should decrease as more Kepler data become available.
The primary Kepler Mission provided nearly continuous monitoring of ~200,000 objects with unprecedented photometric precision. We present the final catalog of eclipsing binary systems within the 105 square degree Kepler field of view. This release in corporates the full extent of the data from the primary mission (Q0-Q17 Data Release). As a result, new systems have been added, additional false positives have been removed, ephemerides and principal parameters have been recomputed, classifications have been revised to rely on analytical models, and eclipse timing variations have been computed for each system. We identify several classes of systems including those that exhibit tertiary eclipse events, systems that show clear evidence of additional bodies, heartbeat systems, systems with changing eclipse depths, and systems exhibiting only one eclipse event over the duration of the mission. We have updated the period and galactic latitude distribution diagrams and included a catalog completeness evaluation. The total number of identified eclipsing and ellipsoidal binary systems in the Kepler field of view has increased to 2878, 1.3% of all observed Kepler targets. An online version of this catalog with downloadable content and visualization tools is maintained at http://keplerEBs.villanova.edu.
120 - D. R. Gies , R. A. Matson , Z. Guo 2015
Many short-period binary stars have distant orbiting companions that have played a role in driving the binary components into close separation. Indirect detection of a tertiary star is possible by measuring apparent changes in eclipse times of eclips ing binaries as the binary orbits the common center of mass. Here we present an analysis of the eclipse timings of 41 eclipsing binaries observed throughout the NASA Kepler mission of long duration and precise photometry. This subset of binaries is characterized by relatively deep and frequent eclipses of both stellar components. We present preliminary orbital elements for seven probable triple stars among this sample, and we discuss apparent period changes in seven additional eclipsing binaries that may be related to motion about a tertiary in a long period orbit. The results will be used in ongoing investigations of the spectra and light curves of these binaries for further evidence of the presence of third stars.
We report the discovery of a new Kepler transiting circumbinary planet (CBP). This latest addition to the still-small family of CBPs defies the current trend of known short-period planets orbiting near the stability limit of binary stars. Unlike the previous discoveries, the planet revolving around the eclipsing binary system Kepler-1647 has a very long orbital period (~1100 days) and was at conjunction only twice during the Kepler mission lifetime. Due to the singular configuration of the system, Kepler-1647b is not only the longest-period transiting CBP at the time of writing, but also one of the longest-period transiting planets. With a radius of 1.06+/-0.01 RJup it is also the largest CBP to date. The planet produced three transits in the light-curve of Kepler-1647 (one of them during an eclipse, creating a syzygy) and measurably perturbed the times of the stellar eclipses, allowing us to measure its mass to be 1.52+/-0.65 MJup. The planet revolves around an 11-day period eclipsing binary consisting of two Solar-mass stars on a slightly inclined, mildly eccentric (e_bin = 0.16), spin-synchronized orbit. Despite having an orbital period three times longer than Earths, Kepler-1647b is in the conservative habitable zone of the binary star throughout its orbit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا