ﻻ يوجد ملخص باللغة العربية
The complex admittance of metal/oxide/pentacene thin film junctions is investigated under ambient conditions. At low frequencies, a contribution attributed to proton diffusion through the oxide is seen. This diffusion is shown to be anomalous and is believed to be also at the origin of the bias stress effect observed in organic field effect transistors. At higher frequencies, two dipolar contributions are evidenced, attributed to defects located one at the organic/oxide interface or within the organic, and the other in the bulk of the oxide. These two dipolar responses show different dynamic properties that manifest themselves in the admittance in the form of a Debye contribution for the defects located in the oxide, and of a Cole-Cole contribution for the defects related to the organic.
The ideal diode is a theoretical concept that completely conducts the electric current under forward bias without any loss and that behaves like a perfect insulator under reverse bias. However, real diodes have a junction barrier that electrons have
Created surfaces or meta surfaces, composed of appropriately shaped sub-wavelength structures, namely, meta-atoms, control light at wavelength scales. Historically, meta surfaces have used radiating metallic resonators as wavelength inclusions. Howev
We calculate the Overhauser frequency shifts in semiconductor nanostructures resulting from the hyperfine interaction between nonequilibrium electronic spins and nuclear spins. The frequency shifts depend on the electronic local density of states and
The methodology used to obtain the values of the spin-orbit couplings from the spin expectation values from perturbation theory was incorrect. As a result Figs. 2 and 3 are incorrect.
We develop a proper nonempirical spin-density formalism for the van der Waals density functional (vdW-DF) method. We show that this generalization, termed svdW-DF, is firmly rooted in the single-particle nature of exchange and we test it on a range o