ترغب بنشر مسار تعليمي؟ اضغط هنا

The deficiencies of Kaehler groups

194   0   0.0 ( 0 )
 نشر من قبل D. Kotschick
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف D. Kotschick




اسأل ChatGPT حول البحث

Generalizing the theorem of Green--Lazarsfeld and Gromov, we classify Kaehler groups of deficiency at least two. As a consequence we see that there are no Kaehler groups of even and strictly positive deficiency. With the same arguments we prove that Kaehler groups that are non-Abelian and are limit groups in the sense of Sela are surface groups.



قيم البحث

اقرأ أيضاً

105 - D. Kotschick 2013
We prove that if the fundamental group of an arbitrary three-manifold -- not necessarily closed, nor orientable -- is a Kaehler group, then it is either finite or the fundamental group of a closed orientable surface.
167 - Inga Blomer 2007
In this paper we compute the Galois cohomology of the pro-p completion of primitive link groups. Here, a primitive link group is the fundamental group of a tame link in the 3-sphere whose linking number diagram is irreducible modulo p (e.g. none of t he linking numbers is divisible by p). The result is that (with Z/pZ-coefficients) the Galois cohomology is naturally isomorphic to the Z/pZ-cohomology of the discrete link group. The main application of this result is that for such groups the Baum-Connes conjecture or the Atiyah conjecture are true for every finite extension (or even every elementary amenable extension), if they are true for the group itself.
Let $G$ be a reductive algebraic group---possibly non-connected---over a field $k$ and let $H$ be a subgroup of $G$. If $G= GL_n$ then there is a degeneration process for obtaining from $H$ a completely reducible subgroup $H$ of $G$; one takes a limi t of $H$ along a cocharacter of $G$ in an appropriate sense. We generalise this idea to arbitrary reductive $G$ using the notion of $G$-complete reducibility and results from geometric invariant theory over non-algebraically closed fields due to the authors and Herpel. Our construction produces a $G$-completely reducible subgroup $H$ of $G$, unique up to $G(k)$-conjugacy, which we call a $k$-semisimplification of $H$. This gives a single unifying construction which extends various special cases in the literature (in particular, it agrees with the usual notion for $G= GL_n$ and with Serres $G$-analogue of semisimplification for subgroups of $G(k)$). We also show that under some extra hypotheses, one can pick $H$ in a more canonical way using the Tits Centre Conjecture for spherical buildings and/or the theory of optimal destabilising cocharacters introduced by Hesselink, Kempf and Rousseau.
We prove that for a connected, semisimple linear Lie group $G$ the spaces of generating pairs of elements or subgroups are well-behaved in a number of ways: the set of pairs of elements generating a dense subgroup is Zariski-open in the compact case, Euclidean-open in general, and always dense. Similarly, for sufficiently generic circle subgroups $H_i$, $i=1,2$ of $G$, the space of conjugates of $H_i$ that generate a dense subgroup is always Zariski-open and dense. Similar statements hold for pairs of Lie subalgebras of the Lie algebra $Lie(G)$.
117 - Jinpeng An , Zhengdong Wang 2005
Using a strong version of the Curve Selection Lemma for real semianalytic sets, we prove that for an arbitrary connected Lie group $G$, each connected component of the set $E_n(G)$ of all elements of order $n$ in $G$ is a conjugacy class in $G$. In p articular, all conjugacy classes of finite order in $G$ are closed. Some properties of connected components of $E_n(G)$ are also given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا