ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for ionized jets towards high-mass young stellar objects

148   0   0.0 ( 0 )
 نشر من قبل Andr\\'es Guzm\\'an
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are carrying out multi-frequency radio continuum observations, using the Australia Telescope Compact Array, to systematically search for collimated ionized jets towards high-mass young stellar objects (HMYSOs). Here we report observations at 1.4, 2.4, 4.8 and 8.6 GHz, made with angular resolutions of about 7, 4, 2, and 1 arcsec, respectively, towards six objects of a sample of 33 southern HMYSOs thought to be in very early stages of evolution. The objects in the sample were selected from radio and infrared catalogs by having positive radio spectral indices and being luminous (L_bol > 20,000 L_sun), but underluminous in radio emission compared to that expected from its bolometric luminosity. This criteria makes the radio sources good candidates for being ionized jets. As part of this systematic search, two ionized jets have been discovered: one previously published and the other reported here. The rest of the observed candidates correspond to three hypercompact hii regions and two ultracompact hii regions. The two jets discovered are associated with two of the most luminous (70,000 and 100,000 Lsun) HMYSOs known to harbor this type of objects, showing that the phenomena of collimated ionized winds appears in the formation process of stars at least up to masses of ~ 20 M_sun and provides strong evidence for a disk-mediated accretion scenario for the formation of high-mass stars. From the incidence of jets in our sample, we estimate that the jet phase in high-mass protostars lasts for 40,000 yr.



قيم البحث

اقرأ أيضاً

Radio continuum observations using the Australia telescope compact array at 5.5, 9.0, 17.0 and 22.8 GHz have detected free-free emission associated with 45 of 49 massive young stellar objects and HII regions. Of these, 26 sources are classified as io nized jets (12 of which are candidates), 2 as ambiguous jets or disc winds, 1 as a disc-wind, 14 as HII regions and 2 were unable to be categorised. Classification as ionized jets is based upon morphology, radio flux and spectral index, in conjunction with previous observational results at other wavelengths. Radio-luminosity and momentum are found to scale with bolometric luminosity in the same way as low-mass jets, indicating a common mechanism for jet production across all masses. In 13 of the jets, we see associated non-thermal/optically-thin lobes resulting from shocks either internal to the jet and/or at working surfaces. Ten jets display non-thermal (synchrotron emission) spectra in their lobes, with an average spectral index of -0.55 consistent with Fermi acceleration in shocks. This shows that magnetic fields are present, in agreement with models of jet formation incorporating magnetic fields. Since the production of collimated radio jets is associated with accretion processes, the results presented in this paper support the picture of disc-mediated accretion for the formation of massive stars with an upper-limit on the jet phase lasting approximately $6.5 times 10^4 yr$. Typical mass loss rates in the jet are found to be $1.4 times 10^{-5} M_odot yr^{-1}$ with associated momentum rates of the order $(1-2) times 10^{-2} M_odot km s^{-1} yr^{-1}$.
Jets and outflows are ubiquitous in the process of formation of stars since outflow is intimately associated with accretion. Free-free (thermal) radio continuum emission is associated with these jets. This emission is relatively weak and compact, and sensitive radio interferometers are required to study it. Observations in the cm range are most useful to trace the base of the ionized jets, close to the central protostar, where optical or near-IR imaging is made difficult by the high extinction present. Radio recombination lines in jets (in combination with proper motions) should provide their 3D kinematics at very small scale. Future instruments such as the Square Kilometre Array (SKA) and the Next Generation Very Large Array (ngVLA) will be crucial to perform this kind of sensitive observations. Thermal jets are associated with both high and low mass protostars and possibly even with substellar objects. The ionizing mechanism of these radio jets appears to be related to shocks in the associated outflows, as suggested by the observed correlation between the cm luminosity and the outflow momentum rate. Some protostellar jets show indications of non-thermal emission in their lobes. Linearly polarized synchrotron emission has been found in the jet of HH 80-81, allowing one to map the jet magnetic field, a key ingredient to determine the collimation and ejection mechanisms. As only a fraction of the emission is polarized, very sensitive observations such as those that will be feasible with the interferometers previously mentioned are required to perform studies in a large sample of sources. Jets are present in many kinds of astrophysical scenarios. Characterizing radio jets in young stars, where thermal emission allows one to determine their physical conditions, would also be useful in understanding acceleration and collimation mechanisms in all kinds of astrophysical jets.
We present a study of the kinematical properties of a small sample of nearby near-infrared bright massive and intermediate mass young stellar objects using emission lines sensitive to discs and winds. We show for the first time that the broad ($sim50 0$kms$^{-1}$) symmetric line wings on the HI Brackett series lines are due to Stark broadening or electron scattering, rather than pure Doppler broadening due to high speed motion. The results are consistent with the presence of a very dense circumstellar environment. In addition, many of these lines show evidence for weak line self-absorption, suggestive of a wind or disc-wind origin for that part of the absorbing material. The weakness of the self-absorption suggests a large opening angle for such an outflow. We also study the fluorescent 1.688$mu$m FeII line, which is sensitive to dense material. We fitted a Keplerian disc model to this line, and find reasonable fits in all bar one case, in agreement with previous finding for classical Be stars that fluorescent iron transitions are reasonable disc tracers. Overall the picture is one in which these stars still have accretion discs, with a very dense inner circumstellar environment which may be tracing either the inner regions of a disc, or of a stellar wind, and in which ionised outflow is also present. The similarity with lower mass stars is striking, suggesting that at least in this mass range they form in a similar fashion.
76 - R. Fedriani 2018
Context: Protostellar jets in high-mass young stellar objects (HMYSOs) play a key role in the understanding of star formation and provide us with an excellent tool to study fundamental properties of HMYSOs. Aims: We aim at studying the physical and kinematic properties of the near-IR (NIR) jet of IRAS,13481-6124 from au to parsec scales. Methods: Our study includes NIR data from the Very Large Telescope instruments SINFONI, CRIRES, and ISAAC. Information about the source and its immediate environment is retrieved with SINFONI. The technique of spectro-astrometry is performed with CRIRES to study the jet on au scales. The parsec-scale jet and its kinematic and dynamic properties are investigated using ISAAC. Results: The SINFONI spectra in the $H$ and $K$ band are rich in emission lines that are mainly associated with ejection and accretion processes. Spectro-astrometry is applied to the Br$gamma$ line, and for the first time, to the Br$alpha$ line, revealing their jet origin with milliarcsecond-scale photocentre displacements ($11-15$,au). This allows us to constrain the kinematics of the au-scale jet and to derive its position angle ($sim216^{circ}$). ISAAC spectroscopy reveals H$_2$ emission along the parsec-scale jet, which allows us to infer kinematic and dynamic properties of the NIR parsec-scale jet. The mass-loss rate inferred for the NIR jet is $dot{M}_mathrm{ejec}sim10^{-4}mathrm{,M_odot,yr^{-1}}$ and the thrust is $dot{P}sim10^{-2}mathrm{,M_odot,yr^{-1},km,s^{-1}}$ , which is roughly constant for the formation history of the young star. A tentative estimate of the ionisation fraction is derived for the massive jet by comparing the radio and NIR mass-loss rates. An ionisation fraction $lesssim8%$ is obtained, which means that the bulk of the ejecta is traced by the NIR jet and that the radio jet only delineates a small portion of it.
We present the results of CS J=2-1 mapping observations towards 39 massive star-forming regions selected from the previous CO line survey of cold IRAS sources with high-velocity CO flows along the Galactic plane (Yang et al. 2002). All sources are de tected in CS J=2-1 showing the existence of CS clumps around the IRAS sources. However, one-third of the sources are not deeply embedded in the dense clumps by comparison of the central powering IRAS sources and the morphologies of CS clumps. Physical parameters of the dense molecular clumps are presented. We have identified 12 high-mass protostellar object (HMPO) candidates by checking the association between the dense cores and the IRAS sources, the detection of water maser, and the radio properties towards the IRAS sources. We find that the HMPO sources are characterized by low FIR luminosity to virial mass ratios since they are in very early evolutionary stages when the massive protostars have not reached their full luminosities, which are typical for zero-age main sequence stars. Large turbulent motion in the HMPO sources may be largely due to the large kinetic energy ejected by the central protostars formed in the dense clumps. However, alternative means or undetected outflows may also be responsible for the turbulence in the clumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا