ترغب بنشر مسار تعليمي؟ اضغط هنا

Higher Order Spin Resonances in a 2.1 GeV/c Polarized Proton Beam

165   0   0.0 ( 0 )
 نشر من قبل A. D. Krisch
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Spin resonances can depolarize or spin-flip a polarized beam. We studied 1st and higher order spin resonances with stored 2.1 GeV/c vertically polarized protons. The 1st order vertical ({ u}y) resonance caused almost full spin-flip, while some higher order { u}y resonances caused partial depolarization. The 1st order horizontal ({ u}x) resonance caused almost full depolarization, while some higher order { u}x resonances again caused partial depolarization. Moreover, a 2nd order { u}x resonance is about as strong as some 3rd order { u}x resonances, while some 3rd order { u}y resonances are much stronger than a 2nd order { u}y resonance. One thought that { u}y spin resonances are far stronger than { u}x, and that lower order resonances are stronger than higher order; the data do not support this.



قيم البحث

اقرأ أيضاً

The SPIN@FERMI collaboration has updated its 1991-95 Reports on the acceleration of polarized protons in Fermilabs Main Injector, which was commissioned by Fermilab. This Updated Report summarizes some updated Physics Goals for a 120-150 GeV/c polari zed proton beam. It also contains an updated discussion of the Modifications and Hardware needed for a polarized beam in the Main Injector, along with an updated Schedule and Budget.
We study inclusive heavy quarkonium production with definite polarizations in polarized proton-proton collisions using the non-relativistic QCD color-octet mechanism. We present results for rapidity distributions of cross sections and spin asymmetrie s for the production of J/psi and psi with specific polarizations in polarized p-p collisions at sqrt s = 200 GeV and 500 GeV at the RHIC within the PHENIX detector acceptance range.
We report a high precision measurement of the transverse single spin asymmetry $A_N$ at the center of mass energy $sqrt{s}=200$ GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The $A_N$ was measured in the four-momentum transf er squared $t$ range $0.003 leqslant |t| leqslant 0.035$ $GeVcSq$, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of $A_N$ and its $t$-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this $sqrt{s}$, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.
The Polarized Electrons for Polarized Positrons experiment at the injector of the Continuous Electron Beam Accelerator Facility has demonstrated for the first time the efficient transfer of polarization from electrons to positrons produced by the pol arized bremsstrahlung radiation induced by a polarized electron beam in a high-$Z$ target. Positron polarization up to 82% have been measured for an initial electron beam momentum of 8.19~MeV/$c$, limited only by the electron beam polarization. This technique extends polarized positron capabilities from GeV to MeV electron beams, and opens access to polarized positron beam physics to a wide community.
153 - Enrico Bagli 2013
Crystals with small thickness along the beam exhibit top performance for steering particle beams through planar channeling. For such crystals, the effect of nuclear dechanneling plays an important role because it affects their efficiency. We addresse d the problem through experimental work carried out with 400 GeV/c protons at fixed-target facilities of CERN-SPS. The dependence of efficiency vs. curvature radius has been investigated and compared favourably to the results of modeling. A realistic estimate of the performance of a crystal designed for LHC energy including nuclear dechanneling has been achieved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا