ترغب بنشر مسار تعليمي؟ اضغط هنا

The Topology of Parabolic Character Varieties of Free Groups

288   0   0.0 ( 0 )
 نشر من قبل Sean Lawton
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let G be a complex affine algebraic reductive group, and let K be a maximal compact subgroup of G. Fix elements h_1,...,h_m in K. For n greater than or equal to 0, let X (respectively, Y) be the space of equivalence classes of representations of the free group of m+n generators in G (respectively, K) such that for each i between 1 and m, the image of the i-th free generator is conjugate to h_i. These spaces are parabolic analogues of character varieties of free groups. We prove that Y is a strong deformation retraction of X. In particular, X and Y are homotopy equivalent. We also describe explicit examples relating X to relative character varieties.



قيم البحث

اقرأ أيضاً

In this paper, we construct a lax monoidal Topological Quantum Field Theory that computes virtual classes, in the Grothendieck ring of algebraic varieties, of $G$-representation varieties over manifolds with conic singularities, which we will call no defolds. This construction is valid for any algebraic group $G$, in any dimension and also in the parabolic setting. In particular, this TQFT allow us to compute the virtual classes of representation varieties over complex singular planar curves. In addition, in the case $G = mathrm{SL}_{2}(k)$, the virtual class of the associated character variety over a nodal closed orientable surface is computed both in the non-parabolic and in the parabolic scenarios.
We study the algebraic symplectic geometry of multiplicative quiver varieties, which are moduli spaces of representations of certain quiver algebras, introduced by Crawley-Boevey and Shaw, called multiplicative preprojective algebras. They are multip licative analogues of Nakajima quiver varieties. They include character varieties of (open) Riemann surfaces fixing conjugacy class closures of the monodromies around punctures, when the quiver is crab-shaped. We prove that, under suitable hypotheses on the dimension vector of the representations, or the conjugacy classes of monodromies in the character variety case, the normalisations of such moduli spaces are symplectic singularities and that the existence of a symplectic resolution depends on a combinatorial condition on the quiver and the dimension vector. These results are analogous to those obtained by Bellamy and the first author in the ordinary quiver variety case, and for character varieties of closed Riemann surfaces. At the end of the paper, we outline some conjectural generalisations to moduli spaces of objects in 2-Calabi--Yau categories.
For G = GL_2, PGL_2 and SL_2 we prove that the perverse filtration associated to the Hitchin map on the cohomology of the moduli space of twisted G-Higgs bundles on a Riemann surface C agrees with the weight filtration on the cohomology of the twiste d G character variety of C, when the cohomologies are identified via non-Abelian Hodge theory. The proof is accomplished by means of a study of the topology of the Hitchin map over the locus of integral spectral curves.
In this article we consider the connected component of the identity of $G$-character varieties of compact Riemann surfaces of genus $g > 0$, for connected complex reductive groups $G$ of type $A$ (e.g., $SL_n$ and $GL_n$). We show that these varietie s are symplectic singularities and classify which admit symplectic resolutions. The classification reduces to the semi-simple case, where we show that a resolution exists if and only if either $g=1$ and $G$ is a product of special linear groups of any rank and copies of the group $PGL_2$, or if $g=2$ and $G = (SL_2)^m$ for some $m$.
This paper studies the geometry and combinatorics of three interrelated varieties: Springer fibers, Steinberg varieties, and parabolic Hessenberg varieties. We prove that each parabolic Hessenberg variety is the pullback of a Steinberg variety under the projection of the flag variety to an appropriate partial flag variety and we give three applications of this result. The first application constructs an explicit paving of all Steinberg varieties in Lie type $A$ in terms of semistandard tableaux. As a result, we obtain an elementary proof of a theorem of Steinberg and Shimomura that the well-known Kostka numbers count the maximal-dimensional irreducible components of Steinberg varieties. The second application proves an open conjecture for certain parabolic Hessenberg varieties in Lie type A by showing that their Betti numbers equal those of a specific union of Schubert varieties. The third application proves that the irreducible components of parabolic Hessenberg varieties are in bijection with the irreducible components of the Steinberg variety. All three of these applications extend our geometric understanding of the three varieties at the heart of this paper, a full understanding of which is unknown even for Springer varieties, despite over forty years worth of work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا