ﻻ يوجد ملخص باللغة العربية
There is ongoing debate over whether Arctic sea-ice has already passed a `tipping point, or whether it will do so in the future. Several recent studies argue that the loss of summer sea ice does not involve an irreversible bifurcation, because it is highly reversible in models. However, a broader definition of a `tipping point also includes other abrupt, non-linear changes that are neither bifurcations nor necessarily irreversible. Examination of satellite data for Arctic sea-ice area reveals an abrupt increase in the amplitude of seasonal variability in 2007 that has persisted since then. We identified this abrupt transition using recently developed methods that can detect multi-modality in time-series data and sometimes forewarn of bifurcations. When removing the mean seasonal cycle (up to 2008) from the satellite data, the residual sea-ice fluctuations switch from uni-modal to multi-modal behaviour around 2007. We originally interpreted this as a bifurcation in which a new lower ice cover attractor appears in deseasonalised fluctuations and is sampled in every summer-autumn from 2007 onwards. However, this interpretation is clearly sensitive to how the seasonal cycle is removed from the raw data, and to the presence of continental land masses restricting winter-spring ice fluctuations. Furthermore, there was no robust early warning signal of critical slowing down prior to the hypothesized bifurcation. Early warning indicators do however show destabilization of the summer-autumn sea-ice cover since 2007. Thus, the bifurcation hypothesis lacks consistent support, but there was an abrupt and persistent increase in the amplitude of the seasonal cycle of Arctic sea-ice cover in 2007, which we describe as a (non-bifurcation) `tipping point. Our statistical methods detect this `tipping point and its time of onset.
The importance of snow cover and ice extent in the Northern Hemisphere was recognized by various authors leading to a positive feedback of surface reflectivity on climate. In fact, the retreat of Arctic sea ice is accompanied by enhanced solar input
The Arctic sea ice represents an important energy reservoir for the climate of the northern hemisphere. The shrinking of the polar ice in the past decades decreases the stored energy and raises serious concerns about future climate changes.[1-4] Mode
The importance of the sea ice retreat in the polar regions for the global warming and the role of ice-albedo feedback was recognized by various authors [1,2]. Similar to a recent study of the phenomenon in the Arctic [3] we present a semi-quantitativ
The BLLac object S4 0954+65 is one of the main targets of the Urumqi monitoring program targeting IntraDay Variable (IDV) sources. Between August 2005 and December 2009, the source was included in 41 observing sessions, carried out at a frequency of
The growing concentrations of the greenhouse gases CO2, CH4 and N2O (GHG) in the atmosphere are often considered as the dominant cause for the global warming during the past decades. The reported temperature data however do not display a simple corre