ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field tuning of terahertz Dirac plasmons in graphene

168   0   0.0 ( 0 )
 نشر من قبل Hugen Yan Mr
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Boundaries and edges of a two dimensional system lower its symmetry and are usually regarded, from the point of view of charge transport, as imperfections. Here we present a first study of the behavior of graphene plasmons in a strong magnetic field that provides a different perspective. We show that the plasmon resonance in micron size graphene disks in a strong magnetic field splits into edge and bulk plasmon modes with opposite dispersion relations, and that the edge plasmons at terahertz frequencies develop increasingly longer lifetimes with increasing magnetic field, in spite of potentially more defects close to the graphene edges. This unintuitive behavior is attributed to increasing quasi-one dimensional field-induced confinement and the resulting suppression of the back-scattering. Due to the linear band structure of graphene, the splitting rate of the edge and bulk modes develops a strong doping dependence, which differs from the behavior of traditional semiconductor two-dimensional electron gas (2DEG) systems. We also observe the appearance of a higher order mode indicating an anharmonic confinement potential even in these well-defined circular disks. Our work not only opens an avenue for studying the physics of graphene edges, but also supports the great potential of graphene for tunable terahertz magneto-optical devices.



قيم البحث

اقرأ أيضاً

Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has p roven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically-tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures and strong magnetic fields) and promise a viable route for various photonic applications.
228 - A. Satou , Y. Koseki , V. Ryzhii 2014
Coupling of plasmons in graphene at terahert (THz) frequencies with surface plasmons in a heavily-doped substrate is studied theoretically. We reveal that a huge scattering rate may completely damp out the plasmons, so that proper choices of material and geometrical parameters are essential to suppress the coupling effect and to obtain the minimum damping rate in graphene. Even with the doping concentration 10^{19} - 10^{20} cm^{-3} and the thickness of the dielectric layer between graphene and the substrate 100 nm, which are typical values in real graphene samples with a heavily-doped substrate, the increase in the damping rate is not negligible in comparison with the acoustic-phonon-limited damping rate. Dependence of the damping rate on wavenumber, thicknesses of graphene-to-substrate and gate-to-graphene separation, substrate doping concentration, and dielectric constants of surrounding materials are investigated. It is shown that the damping rate can be much reduced by the gate screening, which suppresses the field spread of the graphene plasmons into the substrate.
375 - H. Graef , D. Mele , M. Rosticher 2018
Graphene is a valuable 2D platform for plasmonics as illustrated in recent THz and mid-infrared optics experiments. These high-energy plasmons however, couple to the dielectric surface modes giving rise to hybrid plasmon-polariton excitations. Ultra- long-wavelengthes address the low energy end of the plasmon spectrum, in the GHz-THz electronic domain, where intrinsic graphene Dirac plasmons are essentially decoupled from their environment. However experiments are elusive due to the damping by ohmic losses at low frequencies. We demonstrate here a plasma resonance capacitor (PRC) using hexagonal boron-nitride (hBN) encapsulated graphene at cryogenic temperatures in the near ballistic regime. We report on a $100;mathrm{mu m}$ quarter-wave plasmon mode, at $40;mathrm{GHz}$, with a quality factor $Qsimeq2$. The accuracy of the resonant technique yields a precise determination of the electronic compressibility and kinetic inductance, allowing to assess residual deviations from intrinsic Dirac plasmonics. Our capacitor GHz experiment constitutes a first step toward the demonstration of plasma resonance transistors for microwave detection in the sub-THz domain for wireless communications and sensing. It also paves the way to the realization of doping modulated superlattices where plasmon propagation is controlled by Klein tunneling.
Among its many outstanding properties, graphene supports terahertz surface plasma waves -- sub-wavelength charge density oscillations connected with electromagnetic fields that are tightly localized near the surface[1,2]. When these waves are confine d to finite-sized graphene, plasmon resonances emerge that are characterized by alternating charge accumulation at the opposing edges of the graphene. The resonant frequency of such a structure depends on both the size and the surface charge density, and can be electrically tuned throughout the terahertz range by applying a gate voltage[3,4]. The promise of tunable graphene THz plasmonics has yet to be fulfilled, however, because most proposed optoelectronic devices including detectors, filters, and modulators[5-10] desire near total modulation of the absorption or transmission, and require electrical contacts to the graphene -- constraints that are difficult to meet using existing plasmonic structures. We report here a new class of plasmon resonance that occurs in a hybrid graphene-metal structure. The sub-wavelength metal contacts form a capacitive grid for accumulating charge, while the narrow interleaved graphene channels, to first order, serves as a tunable inductive medium, thereby forming a structure that is resonantly-matched to an incident terahertz wave. We experimentally demonstrate resonant absorption near the theoretical maximum in readily-available, large-area graphene, ideal for THz detectors and tunable absorbers. We further predict that the use of high mobility graphene will allow resonant THz transmission near 100%, realizing a tunable THz filter or modulator. The structure is strongly coupled to incident THz radiation, and solves a fundamental problem of how to incorporate a tunable plasmonic channel into a device with electrical contacts.
We report on infrared (IR) nanoscopy of 2D plasmon excitations of Dirac fermions in graphene. This is achieved by confining mid-IR radiation at the apex of a nanoscale tip: an approach yielding two orders of magnitude increase in the value of in-plan e component of incident wavevector q compared to free space propagation. At these high wavevectors, the Dirac plasmon is found to dramatically enhance the near-field interaction with mid-IR surface phonons of SiO2 substrate. Our data augmented by detailed modeling establish graphene as a new medium supporting plasmonic effects that can be controlled by gate voltage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا