ﻻ يوجد ملخص باللغة العربية
Topological superconductors which support Majorana fermions are thought to be realized in one-dimensional semiconducting wires coupled to a superconductor. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize quantum gates that are topologically protected from local sources of decoherence. Here we report the observation of the fractional a.c. Josephson effect in a hybrid semiconductor/superconductor InSb/Nb nanowire junction, a hallmark of topological matter. When the junction is irradiated with a radio-frequency f in the absence of an external magnetic field, quantized voltage steps (Shapiro steps) with a height hf/2e are observed, as is expected for conventional superconductor junctions, where the supercurrent is carried by charge-2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is doubled to hf/e, suggesting that the supercurrent is carried by charge-e quasiparticles. This is a unique signature of Majorana fermions, elusive particles predicted ca. 80 years ago.
Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBSs) among a continuum of conventional Andreev bound states. The distinct feature of these MBSs lies in the $4pi$-periodicity of
Topological superconductors supporting Majorana Fermions with non-abelian statistics are presently a subject of intense theoretical and experimental effort. It has been proposed that the observation of a half-frequency or a fractional Josephson effec
We theoretically study the stability of more than one Majorana Fermion appearing in a $p$-wave superconductor/dirty normal metal/$p$-wave superconductor junction in two-dimension by using chiral symmetry of Hamiltonian. At the phase difference across
We study the response of high-critical current proximity Josephson junctions to a microwave excitation. Electron over-heating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly
Quantum computation by non-Abelian Majorana zero modes (MZMs) offers an approach to achieve fault tolerance by encoding quantum information in the non-local charge parity states of semiconductor nanowire networks in the topological superconductor reg