ترغب بنشر مسار تعليمي؟ اضغط هنا

The Nature of the Compton-thick X-ray Reprocessor in NGC 4945

146   0   0.0 ( 0 )
 نشر من قبل Tahir Yaqoob
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Tahir Yaqoob




اسأل ChatGPT حول البحث

We present an exhaustive methodology for fitting Compton-thick X-ray reprocessor models to obscured AGNs and for interpreting the results. We focus on the MYTORUS model but also utilize other models. We apply the techniques to Suzaku, BeppoSAX, and Swift BAT spectra of the Sy 2 galaxy NGC 4945, but the methods are applicable to other AGNs including Compton-thin sources. The models overcome a major restriction of disk-reflection models, namely the assumption of an infinite column density. Finite column-density models produce a richer variety of spectral shapes and characteristics, even for Compton-thin AGNs. Although NGC 4945 is one of the brightest AGNs above 10 keV, the models span nearly a factor of 3 in column density (~2 to 6 x 10^{24} cm^{-2}) and 2 orders of magnitude in the intrinsic 2-195 keV luminosity. Models in which the continuum above 10 keV is dominated by the direct (unscattered) continuum or Compton-scattered continuum give the highest and lowest intrinsic luminosities respectively. Variability properties favor solutions in which the unscattered continuum dominates above 10 keV. The data require that the Compton-scattered continuum and Fe Kalpha line emission come predominantly from the illuminated surfaces of the X-ray reprocessor, implying a clumpy medium with a global covering factor that is small enough that the Compton-scattered continuum does not dominate the spectrum above 10 keV. This can be identified with the ~30 pc region spatially resolved by Chandra. The implied intrinsic bolometric luminosity is close to, or greater than, the Eddington luminosity. However, a strongly beamed AGN embedded in a shell of Compton-thick (but clumpy) matter requires less fine-tuning of the covering factor. Beaming is consistent with recent radio and Fermi results. Such beamed Compton-thick AGNs would be preferentially selected in surveys over unbeamed Compton-thick AGNs.



قيم البحث

اقرأ أيضاً

249 - Weiwei Xu , Zhu Liu , Lijun Gou 2015
The cold disk/torus gas surrounding active galactic nuclei (AGN) emits fluorescent lines when irradiated by hard X-ray photons. The fluorescent lines of elements other than Fe and Ni are rarely detected due to their relative faintness. We report the detection of K$alpha$ lines of neutral Si, S, Ar, Ca, Cr, and Mn, along with the prominent Fe K$alpha$, Fe K$beta$, and Ni K$alpha$ lines, from the deep Chandra observation of the low-luminosity Compton-thick AGN in M51. The Si K$alpha$ line at 1.74 keV is detected at $sim3sigma$, the other fluorescent lines have a significance between 2 and 2.5 $sigma$, while the Cr line has a significance of $sim1.5sigma$. These faint fluorescent lines are made observable due to the heavy obscuration of the intrinsic spectrum of M51, which is revealed by Nustar observation above 10 keV. The hard X-ray continuum of M51 from Chandra and Nustar can be fitted with a power-law spectrum with an index of 1.8, reprocessed by a torus with an equatorial column density of $N_{rm H}sim7times10^{24}$ cm$^{-2}$ and an inclination angle of $74$ degrees. This confirms the Compton-thick nature of the nucleus of M51. The relative element abundances inferred from the fluxes of the fluorescent lines are similar to their solar values, except for Mn, which is about 10 times overabundant. It indicates that Mn is likely enhanced by the nuclear spallation of Fe.
We present two NuSTAR observations of the local Seyfert 2 active galactic nucleus (AGN) and an ultraluminous X-ray source (ULX) candidate in NGC 5643. Together with archival data from Chandra, XMM-Newton and Swift-BAT, we perform a high-quality broad band spectral analysis of the AGN over two decades in energy ($sim$0.5-100 keV). Previous X-ray observations suggested that the AGN is obscured by a Compton-thick (CT) column of obscuring gas along our line-of-sight. However, the lack of high-quality $gtrsim$ 10 keV observations, together with the presence of a nearby X-ray luminous source, NGC 5643 X-1, had left significant uncertainties in the characterization of the nuclear spectrum. NuSTAR now enables the AGN and NGC 5643 X-1 to be separately resolved above 10 keV for the first time and allows a direct measurement of the absorbing column density toward the nucleus. The new data show that the nucleus is indeed obscured by a CT column of $N_{rm{H}}$ $gtrsim$ 5 $times$ 10$^{24}$ cm$^{-2}$. The range of 2-10 keV absorption-corrected luminosity inferred from the best fitting models is $L_{2-10,rm{int}} =$ (0.8-1.7) $times$ 10$^{42}$ erg s$^{-1}$, consistent with that predicted from multiwavelength intrinsic luminosity indicators. We also study the NuSTAR data for NGC 5643 X-1, and show that it exhibits evidence for a spectral cut-off at energy, $E$ $sim$ 10 keV, similar to that seen in other ULXs observed by NuSTAR. Along with the evidence for significant X-ray luminosity variations in the 3-8 keV band from 2003-2014, our results further strengthen the ULX classification of NGC 5643 X-1.
IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the ava ilable Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of the companion star. From these estimates and from the duration of the eclipse we derive an orbital inclination between 55 and 60 degrees. The broad band time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.
We present $NuSTAR$ X-ray observations of the active galactic nucleus (AGN) in NGC 7674. The source shows a flat X-ray spectrum, suggesting that it is obscured by Compton-thick gas columns. Based upon long-term flux dimming, previous work suggested t he alternate possibility that the source is a recently switched-off AGN with the observed X-rays being the lagged echo from the torus. Our high-quality data show the source to be reflection-dominated in hard X-rays, but with a relatively weak neutral Fe K$alpha$ emission line (equivalent width [EW] of $approx$ 0.4 keV) and a strong Fe XXVI ionised line (EW $approx$ 0.2 keV). We construct an updated long-term X-ray light curve of NGC 7674 and find that the observed 2-10 keV flux has remained constant for the past $approx$ 20 years, following a high flux state probed by $Ginga$. Light travel time arguments constrain the minimum radius of the reflector to be $sim$ 3.2 pc under the switched-off AGN scenario, $approx$ 30 times larger than the expected dust sublimation radius, rendering this possibility unlikely. A patchy Compton-thick AGN (CTAGN) solution is plausible, requiring a minimum line-of-sight column density ($N_{rm H}$) of 3 $times$ 10$^{24}$ cm$^{-2}$ at present, and yields an intrinsic 2-10 keV luminosity of (3-5) $times$ 10$^{43}$ erg s$^{-1}$. Realistic uncertainties span the range of $approx$ (1-13) $times$ 10$^{43}$ erg s$^{-1}$. The source has one of the weakest fluorescence lines amongst {em bona fide} CTAGN, and is potentially a local analogue of bolometrically luminous systems showing complex neutral and ionised Fe emission. It exemplifies the difficulty of identification and proper characterisation of distant CTAGN based on the strength of the neutral Fe K$alpha$ line.
163 - P. Gandhi 2014
We present X-ray observations of the active galactic nucleus (AGN) in NGC 4785. The source is a local Seyfert 2 which has not been studied so far in much detail. It was recently detected with high significance in the 15-60 keV band in the 66 month Sw ift/BAT all sky survey, but there have been no prior pointed X-ray observations of this object. With Suzaku, we clearly detect the source below 10 keV, and find it to have a flat continuum and prominent neutral iron fluorescence line with equivalent width >~1 keV. Fitting the broadband spectra with physical reflection models shows the source to be a bona fide Compton thick AGN with Nh of at least 2x10^{24} cm^{-2} and absorption-corrected 2-10 keV X-ray power L(2-10) ~ few times 10^{42} erg s^{-1}. Realistic uncertainties on L(2-10) computed from the joint confidence interval on the intrinsic power law continuum photon index and normalization are at least a factor of 10. The local bona fide Compton thick AGN population is highly heterogeneous in terms of WISE mid-infrared source colours, and the nucleus of NGC 4785 appears especially sub-dominant in the mid-infrared when comparing to other Compton thick AGN. Such sources would not be easily found using mid-infrared selection alone. The extent of host galaxy extinction to the nucleus is not clear, though NGC 4785 shows a complex core with a double bar and inner disk, adding to the list of known Compton thick AGN in barred host galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا