ﻻ يوجد ملخص باللغة العربية
Recent high-precision mass measurements of $^{9}$Li and $^{9}$Be, performed with the TITAN Penning trap at the TRIUMF ISAC facility, are analyzed in light of state-of-the-art shell model calculations. We find an explanation for the anomalous Isobaric Mass Multiplet Equation (IMME) behaviour for the two $A$ = 9 quartets. The presence of a cubic $d$ = 6.3(17) keV term for the $J^{pi}$ = 3/2$^{-}$ quartet and the vanishing cubic term for the excited $J^{pi}$ = 1/2$^{-}$ multiplet depend upon the presence of a nearby $T$ = 1/2 state in $^{9}$B and $^{9}$Be that induces isospin mixing. This is contrary to previous hypotheses involving purely Coulomb and charge-dependent effects. $T$ = 1/2 states have been observed near the calculated energy, above the $T$ = 3/2 state. However an experimental confirmation of their $J^{pi}$ is needed.
Mass measurements on radionuclides along the potassium isotope chain have been performed with the ISOLTRAP Penning trap mass spectrometer. For 35K T1/2=178ms) to 46K (T1/2=105s) relative mass uncertainties of 2x10-8 and better have been achieved. The
The N/Z dependence of projectile fragmentation at relativistic energies has been studied with the ALADIN forward spectrometer at the GSI Schwerionen Synchrotron (SIS). Stable and radioactive Sn and La beams with an incident energy of 600 MeV per nucl
The pygmy dipole resonance has been studied in the proton-magic nucleus 124Sn with the (a,ag) coincidence method at E=136 MeV. The comparison with results of photon-scattering experiments reveals a splitting into two components with different structu
We discuss experimental evidence for a nuclear phase transition driven by the different concentration of neutrons to protons. Different ratios of the neutron to proton concentrations lead to different critical points for the phase transition. This is
A precision measurement of the gamma yields following the beta decay of 32Cl has determined its isobaric analogue branch to be (22.47^{+0.21}_{-0.19})%. Since it is an almost pure Fermi decay, we can also determine the amount of isospin-symmetry brea