ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient sub-5 approximations for minimum dominating sets in unit disk graphs

401   0   0.0 ( 0 )
 نشر من قبل Vinicius Gusmao Pereira de Sa
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their application in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graphs is NP-hard, numerous approximation algorithms have been proposed in the literature, including some PTAS. However, since the proposal of a linear-time 5-approximation algorithm in 1995, the lack of efficient algorithms attaining better approximation factors has aroused attention. We introduce a linear-time O(n+m) approximation algorithm that takes the usual adjacency representation of the graph as input and outputs a 44/9-approximation. This approximation factor is also attained by a second algorithm, which takes the geometric representation of the graph as input and runs in O(n log n) time regardless of the number of edges. Additionally, we propose a 43/9-approximation which can be obtained in O(n^2 m) time given only the graphs adjacency representation. It is noteworthy that the dominating sets obtained by our algorithms are also independent sets.



قيم البحث

اقرأ أيضاً

Retraction note: After posting the manuscript on arXiv, we were informed by Erik Jan van Leeuwen that both results were known and they appeared in his thesis[vL09]. A PTAS for MDS is at Theorem 6.3.21 on page 79 and A PTAS for MCDS is at Theorem 6.3. 31 on page 82. The techniques used are very similar. He noted that the idea for dealing with the connected version using a constant number of extra layers in the shifting technique not only appeared Zhang et al.[ZGWD09] but also in his 2005 paper [vL05]. Finally, van Leeuwen also informed us that the open problem that we posted has been resolved by Marx~[Mar06, Mar07] who showed that an efficient PTAS for MDS does not exist [Mar06] and under ETH, the running time of $n^{O(1/epsilon)}$ is best possible [Mar07]. We thank Erik Jan van Leeuwen for the information and we regret that we made this mistake. Abstract before retraction: We present two (exponentially) faster PTASs for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTASs that find $(1+epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph run in time $n^{O(1/epsilon)}$. This can be compared to the best known $n^{O(1/epsilon log {1/epsilon})}$-time PTAS by Nieberg and Hurink~[WAOA05] for MDS that only uses graph structures and an $n^{O(1/epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du~[J Glob Optim09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional widths of the problems.
In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a positive integer $d>0$. We first show that the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem belongs to NP-hard class. Next, we propose a simple polynomial-time constant-factor approximation algorithms and PTAS for both the problems.
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem con sists of a vertex-weighted uncertain graph $G=(V, E, p, omega)$ and an integer {em budget} (or {em solution size}) $k$, and the objective is to compute a vertex set $S$ of size $k$ that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of $S$. We refer to the problem as the {em Probabilistic Budgeted Dominating Set}~(PBDS) problem and present the following results. begin{enumerate} dnsitem We show that the PBDS problem is NP-complete even when restricted to uncertain {em trees} of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is wone-hard for the budget parameter $k$, and under the {em Exponential time hypothesis} it cannot be solved in $n^{o(k)}$ time. item We show that if one is willing to settle for $(1-epsilon)$ approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. item We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is wone-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget $k$ and the treewidth. item Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. end{enumerate}
Let $G=(V,E)$ be an undirected graph. We call $D_t subseteq V$ as a total dominating set (TDS) of $G$ if each vertex $v in V$ has a dominator in $D$ other than itself. Here we consider the TDS problem in unit disk graphs, where the objective is to fi nd a minimum cardinality total dominating set for an input graph. We prove that the TDS problem is NP-hard in unit disk graphs. Next, we propose an 8-factor approximation algorithm for the problem. The running time of the proposed approximation algorithm is $O(n log k)$, where $n$ is the number of vertices of the input graph and $k$ is output size. We also show that TDS problem admits a PTAS in unit disk graphs.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions neede d to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا