ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient sub-5 approximations for minimum dominating sets in unit disk graphs

214   0   0.0 ( 0 )
 نشر من قبل Vinicius Gusmao Pereira de Sa
 تاريخ النشر 2012
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

A unit disk graph is the intersection graph of n congruent disks in the plane. Dominating sets in unit disk graphs are widely studied due to their application in wireless ad-hoc networks. Because the minimum dominating set problem for unit disk graphs is NP-hard, numerous approximation algorithms have been proposed in the literature, including some PTAS. However, since the proposal of a linear-time 5-approximation algorithm in 1995, the lack of efficient algorithms attaining better approximation factors has aroused attention. We introduce a linear-time O(n+m) approximation algorithm that takes the usual adjacency representation of the graph as input and outputs a 44/9-approximation. This approximation factor is also attained by a second algorithm, which takes the geometric representation of the graph as input and runs in O(n log n) time regardless of the number of edges. Additionally, we propose a 43/9-approximation which can be obtained in O(n^2 m) time given only the graphs adjacency representation. It is noteworthy that the dominating sets obtained by our algorithms are also independent sets.



قيم البحث

اقرأ أيضاً

Retraction note: After posting the manuscript on arXiv, we were informed by Erik Jan van Leeuwen that both results were known and they appeared in his thesis[vL09]. A PTAS for MDS is at Theorem 6.3.21 on page 79 and A PTAS for MCDS is at Theorem 6.3. 31 on page 82. The techniques used are very similar. He noted that the idea for dealing with the connected version using a constant number of extra layers in the shifting technique not only appeared Zhang et al.[ZGWD09] but also in his 2005 paper [vL05]. Finally, van Leeuwen also informed us that the open problem that we posted has been resolved by Marx~[Mar06, Mar07] who showed that an efficient PTAS for MDS does not exist [Mar06] and under ETH, the running time of $n^{O(1/epsilon)}$ is best possible [Mar07]. We thank Erik Jan van Leeuwen for the information and we regret that we made this mistake. Abstract before retraction: We present two (exponentially) faster PTASs for dominating set problems in unit disk graphs. Given a geometric representation of a unit disk graph, our PTASs that find $(1+epsilon)$-approximate solutions to the Minimum Dominating Set (MDS) and the Minimum Connected Dominating Set (MCDS) of the input graph run in time $n^{O(1/epsilon)}$. This can be compared to the best known $n^{O(1/epsilon log {1/epsilon})}$-time PTAS by Nieberg and Hurink~[WAOA05] for MDS that only uses graph structures and an $n^{O(1/epsilon^2)}$-time PTAS for MCDS by Zhang, Gao, Wu, and Du~[J Glob Optim09]. Our key ingredients are improved dynamic programming algorithms that depend exponentially on more essential 1-dimensional widths of the problems.
In this article, we study a generalized version of the maximum independent set and minimum dominating set problems, namely, the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem on unit disk graphs for a positive integer $d>0$. We first show that the maximum $d$-distance independent set problem and the minimum $d$-distance dominating set problem belongs to NP-hard class. Next, we propose a simple polynomial-time constant-factor approximation algorithms and PTAS for both the problems.
We study the {em Budgeted Dominating Set} (BDS) problem on uncertain graphs, namely, graphs with a probability distribution $p$ associated with the edges, such that an edge $e$ exists in the graph with probability $p(e)$. The input to the problem con sists of a vertex-weighted uncertain graph $G=(V, E, p, omega)$ and an integer {em budget} (or {em solution size}) $k$, and the objective is to compute a vertex set $S$ of size $k$ that maximizes the expected total domination (or total weight) of vertices in the closed neighborhood of $S$. We refer to the problem as the {em Probabilistic Budgeted Dominating Set}~(PBDS) problem and present the following results. begin{enumerate} dnsitem We show that the PBDS problem is NP-complete even when restricted to uncertain {em trees} of diameter at most four. This is in sharp contrast with the well-known fact that the BDS problem is solvable in polynomial time in trees. We further show that PBDS is wone-hard for the budget parameter $k$, and under the {em Exponential time hypothesis} it cannot be solved in $n^{o(k)}$ time. item We show that if one is willing to settle for $(1-epsilon)$ approximation, then there exists a PTAS for PBDS on trees. Moreover, for the scenario of uniform edge-probabilities, the problem can be solved optimally in polynomial time. item We consider the parameterized complexity of the PBDS problem, and show that Uni-PBDS (where all edge probabilities are identical) is wone-hard for the parameter pathwidth. On the other hand, we show that it is FPT in the combined parameters of the budget $k$ and the treewidth. item Finally, we extend some of our parameterized results to planar and apex-minor-free graphs. end{enumerate}
Let $G=(V,E)$ be an undirected graph. We call $D_t subseteq V$ as a total dominating set (TDS) of $G$ if each vertex $v in V$ has a dominator in $D$ other than itself. Here we consider the TDS problem in unit disk graphs, where the objective is to fi nd a minimum cardinality total dominating set for an input graph. We prove that the TDS problem is NP-hard in unit disk graphs. Next, we propose an 8-factor approximation algorithm for the problem. The running time of the proposed approximation algorithm is $O(n log k)$, where $n$ is the number of vertices of the input graph and $k$ is output size. We also show that TDS problem admits a PTAS in unit disk graphs.
A forbidden transition graph is a graph defined together with a set of permitted transitions i.e. unordered pair of adjacent edges that one may use consecutively in a walk in the graph. In this paper, we look for the smallest set of transitions neede d to be able to go from any vertex of the given graph to any other. We prove that this problem is NP-hard and study approximation algorithms. We develop theoretical tools that help to study this problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا