ﻻ يوجد ملخص باللغة العربية
Markov chain Monte Carlo is a widely-used technique for generating a dependent sequence of samples from complex distributions. Conventionally, these methods require a source of independent random variates. Most implementations use pseudo-random numbers instead because generating true independent variates with a physical system is not straightforward. In this paper we show how to modify some commonly used Markov chains to use a dependent stream of random numbers in place of independent uniform variates. The resulting Markov chains have the correct invariant distribution without requiring detailed knowledge of the streams dependencies or even its marginal distribution. As a side-effect, sometimes far fewer random numbers are required to obtain accurate results.
An important task in machine learning and statistics is the approximation of a probability measure by an empirical measure supported on a discrete point set. Stein Points are a class of algorithms for this task, which proceed by sequentially minimisi
We introduce interacting particle Markov chain Monte Carlo (iPMCMC), a PMCMC method based on an interacting pool of standard and conditional sequential Monte Carlo samplers. Like related methods, iPMCMC is a Markov chain Monte Carlo sampler on an ext
We introduce an ensemble Markov chain Monte Carlo approach to sampling from a probability density with known likelihood. This method upgrades an underlying Markov chain by allowing an ensemble of such chains to interact via a process in which one cha
In this article we consider computing expectations w.r.t.~probability laws associated to a certain class of stochastic systems. In order to achieve such a task, one must not only resort to numerical approximation of the expectation, but also to a bia
Markov chain Monte Carlo (MCMC) is one of the most useful approaches to scientific computing because of its flexible construction, ease of use and generality. Indeed, MCMC is indispensable for performing Bayesian analysis. Two critical questions that