ترغب بنشر مسار تعليمي؟ اضغط هنا

Fabrication and electrical characterization of three-dimensional graphitic microchannels in single crystal diamond

154   0   0.0 ( 0 )
 نشر من قبل Paolo Olivero
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the systematic characterization of conductive micro-channels fabricated in single-crystal diamond with direct ion microbeam writing. Focused high-energy (~MeV) helium ions are employed to selectively convert diamond with micrometric spatial accuracy to a stable graphitic phase upon thermal annealing, due to the induced structural damage occurring at the end-of-range. A variable-thickness mask allows the accurate modulation of the depth at which the microchannels are formed, from several {mu}m deep up to the very surface of the sample. By means of cross-sectional transmission electron microscopy (TEM) we demonstrate that the technique allows the direct writing of amorphous (and graphitic, upon suitable thermal annealing) microstructures extending within the insulating diamond matrix in the three spatial directions, and in particular that buried channels embedded in a highly insulating matrix emerge and electrically connect to the sample surface at specific locations. Moreover, by means of electrical characterization both at room temperature and variable temperature, we investigate the conductivity and the charge-transport mechanisms of microchannels obtained by implantation at different ion fluences and after subsequent thermal processes, demonstrating that upon high-temperature annealing, the channels implanted above a critical damage density convert to a stable graphitic phase. These structures have significant impact for different applications, such as compact ionizing radiation detectors, dosimeters, bio-sensors and more generally diamond-based devices with buried three-dimensional all-carbon electrodes.



قيم البحث

اقرأ أيضاً

We report on the Raman and photoluminescence characterization of three-dimensional microstructures created in single crystal diamond with a Focused Ion Beam (FIB) assisted lift-off technique. The method is based on MeV ion implantation to create a bu ried etchable layer, followed by FIB patterning and selective etching. In the applications of such microstructures where the properties of high quality single crystal diamond are most relevant, residual damage after the fabrication process represents a critical technological issue. The results of Raman and photoluminescence characterization indicate that the partial distortion of the sp3-bonded lattice and the formation of isolated point defects are effectively removed after thermal annealing, leaving low amounts of residual damage in the final structures. Three-dimensional microstructures in single-crystal diamond offer a large range of applications, such as quantum optics devices and fully integrated opto mechanical assemblies.
We demonstrate the fabrication of sub-micron layers of single-crystal diamond suitable for subsequent processing as demonstrated by this test ring structure. This method is a significant enabling technology for nanomechanical and photonic structures incorporating colour-centres. The process uses a novel double implant process, annealing and chemical etching to produce membranes of diamond from single-crystal starting material, the thinnest layers achieved to date are 210 nm thick.
We report on a novel method for the fabrication of three-dimensional buried graphitic micropaths in single crystal diamond with the employment of focused MeV ions. The use of implantation masks with graded thickness at the sub-micrometer scale allows the formation of conductive channels which are embedded in the insulating matrix at controllable depths. In particular, the modulation of the channels depth at their endpoints allows the surface contacting of the channel terminations with no need of further fabrication stages. In the present work we describe the sample masking, which includes the deposition of semi spherical gold contacts on the sample surface, followed by MeV ion implantation. Because of the significant difference between the densities of pristine and amorphous or graphitized diamond, the formation of buried channels has a relevant mechanical effect on the diamond structure, causing localized surface swelling, which has been measured both with interferometric profilometry and atomic force microscopy. The electrical properties of the buried channels are then measured with a two point probe station: clear evidence is given that only the terminal points of the channels are electrically connected with the surface, while the rest of the channels extends below the surface. IV measurements are employed also to qualitatively investigate the electrical properties of the channels as a function of implantation fluence and annealing.
134 - F. Picollo , S. Rubanov , C. Tomba 2016
We report on the structural modifications induced by a lambda = 532 nm ns-pulsed high-power laser on sub-superficial graphitic layers in single-crystal diamond realized by means of MeV ion implantation. A systematic characterization of the structures obtained under different laser irradiation conditions (power density, number of pulses) and subsequent thermal annealing was performed by different electron microscopy techniques. The main feature observed after laser irradiation is the thickening of the pre-existing graphitic layer. Cross sectional SEM imaging was performed to directly measure the thickness of the modified layers, and subsequent selective etching of the buried layers was employed to both assess their graphitic nature and enhance the SEM imaging contrast. In particular, it was found that for optimal irradiation parameters the laser processing induces a six-fold increase the thickness of sub superficial graphitic layers without inducing mechanical failures in the surrounding crystal. TEM microscopy and EELS spectroscopy allowed a detailed analysis of the internal structure of the laser irradiated layers, highlighting the presence of different nano graphitic and amorphous layers. The obtained results demonstrate the effectiveness and versatility of high-power laser irradiation for an accurate tuning of the geometrical and structural features of graphitic structures embedded in single crystal diamond, and open new opportunities in diamond fabrication.
Single-crystal diamond plates with surfaces oriented in a (111) crystal plane are required for high-performance solid-state device platforms ranging from power electronics to quantum information processing architectures. However, producing plates wit h this orientation has proven challenging. In this paper, we demonstrate a method for reliably and precisely fabricating (111)-faced plates from commercially available, chemical-vapor-deposition-grown, type-IIa single-crystal diamond substrates with (100) faces. Our method uses a nanosecond-pulsed visible laser to nucleate and propagate a mechanical cleave in a chosen (111) crystal plane, resulting in faces as large as 3.0 mm$times$0.3 mm with atomically flat surfaces, negligible miscut angles, and near zero kerf loss. We discuss the underlying physical mechanisms of the process along with potential improvements that will enable the production of millimeter-scale (111)-faced single-crystal diamond plates for a variety of emerging devices and applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا