ترغب بنشر مسار تعليمي؟ اضغط هنا

Characterizing Low-Mass Binaries From Observation of Long Time-scale Caustic-crossing Gravitational Microlensing Events

138   0   0.0 ( 0 )
 نشر من قبل Cheongho Han
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Despite astrophysical importance of binary star systems, detections are limited to those located in small ranges of separations, distances, and masses and thus it is necessary to use a variety of observational techniques for a complete view of stellar multiplicity across a broad range of physical parameters. In this paper, we report the detections and measurements of 2 binaries discovered from observations of microlensing events MOA-2011-BLG-090 and OGLE-2011-BLG-0417. Determinations of the binary masses are possible by simultaneously measuring the Einstein radius and the lens parallax. The measured masses of the binary components are 0.43 $M_{odot}$ and 0.39 $M_{odot}$ for MOA-2011-BLG-090 and 0.57 $M_{odot}$ and 0.17 $M_{odot}$ for OGLE-2011-BLG-0417 and thus both lens components of MOA-2011-BLG-090 and one component of OGLE-2011-BLG-0417 are M dwarfs, demonstrating the usefulness of microlensing in detecting binaries composed of low-mass components. From modeling of the light curves considering full Keplerian motion of the lens, we also measure the orbital parameters of the binaries. The blended light of OGLE-2011-BLG-0417 comes very likely from the lens itself, making it possible to check the microlensing orbital solution by follow-up radial-velocity observation. For both events, the caustic-crossing parts of the light curves, which are critical for determining the physical lens parameters, were resolved by high-cadence survey observations and thus it is expected that the number of microlensing binaries with measured physical parameters will increase in the future.



قيم البحث

اقرأ أيضاً

371 - A. Cassan 2009
Aims: Caustic-crossing binary-lens microlensing events are important anomalous events because they are capable of detecting an extrasolar planet companion orbiting the lens star. Fast and robust modelling methods are thus of prime interest in helping to decide whether a planet is detected by an event. Cassan (2008) introduced a new set of parameters to model binary-lens events, which are closely related to properties of the light curve. In this work, we explain how Bayesian priors can be added to this framework, and investigate on interesting options. Methods: We develop a mathematical formulation that allows us to compute analytically the priors on the new parameters, given some previous knowledge about other physical quantities. We explicitly compute the priors for a number of interesting cases, and show how this can be implemented in a fully Bayesian, Markov chain Monte Carlo algorithm. Results: Using Bayesian priors can accelerate microlens fitting codes by reducing the time spent considering physically implausible models, and helps us to discriminate between alternative models based on the physical plausibility of their parameters.
134 - N. Kains , A. Cassan , K. Horne 2009
We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-47 2, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain-Monte Carlo algorithm. We find a number of low-chi2 regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of events.
High amplification events (HAEs) are common phenomena in extragalactic gravitational lens systems (GLSs), where the multiple images of a distant quasar are observed through a foreground galaxy. There is a considerable brightness magnification in one of the quasar images during HAE. Grieger, Kayser, and Refsdal (1988) proposed to use HAEs to study the central regions of quasars in GLSs. In this paper, we consider some problems concerning the identification of different source types on the basis of the HAE observations. We compare the results of light curve simulations to estimate a feasibility to distinguish different source models in GLSs. Analytic approximation methods yielding solutions of the lens equation in a vicinity of fold caustic crossing events are presented. The results are used to obtain amplification factors, which the higher-order corrections for the Gaussian, power-law, and limb-darkening models of a source take into account.
We search for microlensing planets with signals exhibiting no caustic-crossing features, considering the possibility that such signals may be missed due to their weak and featureless nature. For this purpose, we reexamine the lensing events found by the KMTNet survey before the 2019 season. From this investigation, we find two new planetary lensing events, KMT-2018-BLG-1976 and KMT-2018-BLG-1996. We also present the analysis of the planetary event OGLE-2019-BLG-0954, for which the planetary signal was known, but no detailed analysis has been presented before. We identify the genuineness of the planetary signals by checking various interpretations that can generate short-term anomalies in lensing light curves. From Bayesian analyses conducted with the constraint from available observables, we find that the host and planet masses are $(M_1, M_2)sim (0.65~M_odot, 2~M_{rm J})$ for KMT-2018-BLG-1976L, $sim (0.69~M_odot, 1~M_{rm J})$ for KMT-2018-BLG-1996L, and $sim (0.80~M_odot, 14~M_{rm J})$ for OGLE-2019-BLG-0954L. The estimated distance to OGLE-2019-BLG-0954L, $3.63^{+1.22}_{-1.64}$~kpc, indicates that it is located in the disk, and the brightness expected from the mass and distance matches well the brightness of the blend, indicating that the lens accounts for most of the blended flux. The lens of OGLE-2019-BLG-0954 could be resolved from the source by conducting high-resolution follow-up observations in and after 2024.
First, we review the current status of the detection of strong `external variability in the CLASS gravitational B1600+434, focusing on the 1998 VLA 8.5-GHz and 1998/9 WSRT multi-frequency observations. We show that this data can best be explained in terms of radio-microlensing. We then proceed to show some preliminary results from our new multi-frequency VLA monitoring program, in particular the detection of a strong feature (~30%) in the light curve of the lensed image which passes predominantly through the dark-matter halo of the lens galaxy. We tentatively interpret this event, which lasted for several weeks, as a radio-microlensing caustic crossing, i.e. the superluminal motion of a micro-arcsec-scale jet-component in the lensed source over a single caustic in the magnification pattern, that has been created by massive compact objects along the line-of-sight to the lensed image.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا