In this work we consider the communication of information in the presence of a causal adversarial jammer. In the setting under study, a sender wishes to communicate a message to a receiver by transmitting a codeword $(x_1,...,x_n)$ bit-by-bit over a communication channel. The sender and the receiver do not share common randomness. The adversarial jammer can view the transmitted bits $x_i$ one at a time, and can change up to a $p$-fraction of them. However, the decisions of the jammer must be made in a causal manner. Namely, for each bit $x_i$ the jammers decision on whether to corrupt it or not must depend only on $x_j$ for $j leq i$. This is in contrast to the classical adversarial jamming situations in which the jammer has no knowledge of $(x_1,...,x_n)$, or knows $(x_1,...,x_n)$ completely. In this work, we present upper bounds (that hold under both the average and maximal probability of error criteria) on the capacity which hold for both deterministic and stochastic encoding schemes.