ﻻ يوجد ملخص باللغة العربية
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. In this paper we introduce $pi$-Rickart modules as a generalization of generalized right principally projective rings as well as that of Rickart modules. The module $M$ is called {it $pi$-Rickart} if for any $fin S$, there exist $e^2=ein S$ and a positive integer $n$ such that $r_M(f^n)=eM$. We prove that several results of Rickart modules can be extended to $pi$-Rickart modules for this general settings, and investigate relations between a $pi$-Rickart module and its endomorphism ring.
Let $R$ be an arbitrary ring with identity and $M$ a right $R$-module with $S=$ End$_R(M)$. Let $Z_2(M)$ be the second singular submodule of $M$. In this paper, we define Goldie Rickart modules by utilizing the endomorphisms of a module. The module $
We initiate a study on a range of new generalized derivations of finite-dimensional Lie algebras over an algebraically closed field of characteristic zero. This new generalization of derivations has an analogue in the theory of associative prime ring
In this paper, we are interested in a class of modules partaking in the hierarchy of injective and cotorsion modules, so-called Harmanci injective modules, which turn out by the motivation of relations among the concepts of injectivity, flatness and
In this paper, we define the induced modules of Lie algebra ad$(B)$ associated with a 3-Lie algebra $B$-module, and study the relation between 3-Lie algebra $A_{omega}^{delta}$-modules and induced modules of inner derivation algebra ad$(A_{omega}^{de
It is proved that if A_p is a countable elementary abelian p-group, then: (i) The ring End(A_p) does not admit a nondiscrete locally compact ring topology. (ii) Under (CH) the simple ring End(A_p)/I, where I is the ideal of End(A_p) consisting of all