ﻻ يوجد ملخص باللغة العربية
The barred grand-design spiral M83 (NGC 5236) is one of the most studied galaxies given its proximity, orientation, and particular complexity. Nonetheless, many aspects of the central regions remain controversial conveying our limited understanding of the inner gas and stellar kinematics, and ultimately of the nucleus evolution. In this work, we present AO VLT-SINFONI data of its central ~235x140 pc with an unprecedented spatial resolution of ~0.2 arcsec, corresponding to ~4 pc. We have focused our study on the distribution and kinematics of the stars and the ionised and molecular gas by studying in detail the Pa_alpha and Br_gamma emission, the H_2 1-0S(1) line at 2.122 micron and the [FeII] line at 1.644 micron, together with the CO absorption bands at 2.293 micron and 2.323 micron. Our results reveal a complex situation where the gas and stellar kinematics are totally unrelated. Supernova explosions play an important role in shaping the gas kinematics, dominated by shocks and inflows at scales of tens of parsecs that make them unsuitable to derive general dynamical properties. We propose that the location of the nucleus of M83 is unlikely to be related to the off-centre optical nucleus. The study of the stellar kinematics reveals that the optical nucleus is a gravitationally bound massive star cluster with M_dyn = (1.1 pm 0.4)x10^7 M_sun, formed by a past starburst. The kinematic and photometric analysis of the cluster yield that the stellar content of the cluster is well described by an intermediate age population of log T(yr) = 8.0pm0.4, with a mass of M simeq (7.8pm2.4)x10^6 M_sun.
We present the spatially resolved gas and stellar kinematics of a sample of ten hidden type 1 AGNs in order to investigate the true nature of the central source and the scaling relation with host galaxy stellar velocity dispersion. The sample is sele
We present the internal kinematics of UCD3, the brightest known ultra-compact dwarf galaxy (UCD) in the Fornax cluster, making this the first UCD with spatially resolved spectroscopy. Our study is based on seeing-limited observations obtained with th
Superluminous supernovae (SLSNe) are the most luminous supernovae in the universe. They are found in extreme star-forming galaxies and are probably connected with the death of massive stars. One hallmark of very massive progenitors would be a tendenc
Morphology is often used to infer the state of relaxation of galaxy clusters. The regularity, symmetry, and degree to which a cluster is centrally concentrated inform quantitative measures of cluster morphology. The Cluster Lensing and Supernova surv
We present the Star Formation History (SFH) and the age-metallicity relation (AMR) in three fields of the Fornax dwarf spheroidal galaxy. They sample a region spanning from the centre of the galaxy to beyond one core radius, which allows studying gal