Minimal model of associative learning for cross-situational lexicon acquisition


الملخص بالإنكليزية

An explanation for the acquisition of word-object mappings is the associative learning in a cross-situational scenario. Here we present analytical results of the performance of a simple associative learning algorithm for acquiring a one-to-one mapping between $N$ objects and $N$ words based solely on the co-occurrence between objects and words. In particular, a learning trial in our learning scenario consists of the presentation of $C + 1 < N$ objects together with a target word, which refers to one of the objects in the context. We find that the learning times are distributed exponentially and the learning rates are given by $ln{[frac{N(N-1)}{C + (N-1)^{2}}]}$ in the case the $N$ target words are sampled randomly and by $frac{1}{N} ln [frac{N-1}{C}] $ in the case they follow a deterministic presentation sequence. This learning performance is much superior to those exhibited by humans and more realistic learning algorithms in cross-situational experiments. We show that introduction of discrimination limitations using Webers law and forgetting reduce the performance of the associative algorithm to the human level.

تحميل البحث